
Understanding Few-Shot Neural Architecture Search with Zero-Cost
Proxies

Timotée LY-MANSON1 Mathieu LÉONARDON1 Abdeldjalil AISSA EL BEY1

1IMT Atlantique, UMR CNRS 6285 Lab-STICC, 29238 Brest, France

Résumé – Dans cet article, nous développons le sujet de la recherche d’architectures neurales (NAS) avec poids partagés. Suivant
les travaux sur « few-shot NAS » dans lesquels des supernets contenant toutes les architectures de l’espace de recherche sont
partitionés de manière itérative, nous introduisons un environnement pour la division efficace des supernets en utilisant des métriques
« sans coût ». Nous étudions le comportement de diverses métriques dans cet environnement pour mieux comprendre les principes
généraux de la division des supernets.

Abstract – In this paper, we expand on Neural Architecture Search (NAS) in the weight-sharing setting. Following the few-shot
NAS line of work, where supernets that contain every architecture in the search space are iteratively partitioned, we introduce
a framework for efficient splitting of supernets using zero-cost metrics. We study the behavior of various metrics within this
framework and gain insight on general principles of supernet splitting.

1 Introduction
Neural networks have recently seen great success in many

tasks from various fields including computer vision and lan-
guage. Finding the right neural network architecture for a
given task typically requires careful tuning by human experts.
Neural Architecture Search (NAS) is the field dedicated to
automating neural network architecture design, whose aim is
to alleviate the need for expert tuning. Early NAS methods
leverage reinforcement learning [14, 17] or evolutionary algo-
rithms [13] with unreasonable computation costs. Thus, recent
efforts have been directed towards reducing the search costs of
NAS. One-shot methods [12] are designed to tackle this issue.

While one-shot methods [4,6,10] have successfully reduced
the time cost and complexity of NAS using the weight-sharing
paradigm, they are criticized for being poor proxies to the
performance of real architectures [2, 15]. Few-shot NAS [16]
is proposed as an answer by partitioning the search space
into smaller parts, and is further enhanced by learning these
partitions [7].

In parallel, so-called zero-shot NAS methods [1, 3, 11] have
had increasing success. These methods remove the need to
train any network by guiding the search phase of NAS using
zero-cost proxies that estimate the relevance of a candidate
architecture using a single batch of data.

In the present paper, we introduce a framework to iteratively
split supernets using any metric. We implement several zero-
cost proxies as metrics within this framework and study the
behavior of supernet splits. In particular, we introduce the split
distance as way to measure the consistency of metrics across
splitting iterations.

2 Related Works

2.1 One-shot NAS
Weight sharing [12] is introduced as a technique to compress

the prohibitive training times of other NAS methods. The

need to train many architectures in order to obtain a label
indicative of their performance is reduced to the training of
a single model, the supernet, which enables the joint training
of every architecture in the search space. Typically, in a one-
shot framework, architectures in the search space are built
from a cell represented as a directed acyclic graph, where the
nodes are intermediate features while the edges are candidate
operations. The output at the k-th cell is given by :

ōk(x) =

N∑
i=1

i∑
j=1

oi,j(x,wi,j)

where N is the number of nodes in the cell, oi,j is the operation
situated on the edge between the i-th and j-th nodes, w are
the parameters of the model, x is the input. The cell is then
repeated and stacked K times to form a complete architecture.
In contrast, the supernet’s edges are a superposition of all
possible operations in the operation space O :

ōk(x) =

N∑
i=1

i∑
j=1

∑
o∈O

o(x,wi,j)

Many classical methods such as SPOS [6] or FairNAS [4]
treat the supernet as a proxy to evaluate architecture perfor-
mance and guide the search. At each search iteration, an archi-
tecture is sampled using each method’s specific strategy. Then
the weights learned by the supernet are copied to the sampled
architecture, which is evaluated without any further retraining.
However, while one-shot NAS can divide search costs by up
to 1000 compared to evaluating each candidate from scratch,
the performance of the final selected architectures suffer a no-
ticeable decrease. As showcased in [15], one-shot algorithms
may only be marginally better than random search for a similar
time budget. Furthermore, by evaluating and ranking every
architecture in a given search space, they find that rankings
made by the supernet proxy are poorly correlated with ground
truth rankings.

Following these previous observations, co-adaptation is
introduced in [2] as an intuitive reason for supernets’ short-

1

mailto:timotee.ly-manson@imt-atlantique.fr
mailto:mathieu.leonardon@imt-atlantique.fr
mailto:abdeldjalil.aissaelbey@imt-atlantique.fr


comings. During supernet training, weights are optimized for
joint use of the operations, as opposed to the standalone setup
in candidate architectures.As a result, the most important oper-
ation on a given edge might become under-optimized and not
be chosen in the subsequent search phase.

2.2 Few-shot NAS
Few-shot NAS [16] is proposed as a way to counteract

co-adaptation and increase performance while still benefiting
from the low complexity of the one-shot framework. After
training the supernet, an edge is chosen and the supernet is
split exhaustively into sub-supernets along this edge. For every
sub-supernet, there is a single operation along the target edge,
removing any co-adaptation effects.

These sub-supernets are fine-tuned for several epochs, then
the top k sub-supernets are selected and the architecture search
is conducted over these. Each sub-supernet can further be
splitted along a new edge to increase performance, resulting
in a supernet splitting tree with the full supernet at its root.

Expanding on few-shot NAS, GM-NAS [7] hypothesizes
that the influence of co-adaptation is heavily dependant on
which operations are grouped together. Thus, splits should
be learned in such a way that operations which cooperate
well together remain joined in the sub-supernet, as opposed
to splitting exhaustively over operations. To this end, the
gradient matching metric is introduced, which quantifies the
similarity of the effects of two operations on the gradients of
the sub-supernet :

GMk(oi, oj) = SC [∇w(L(mk
Ω\oi , w)),∇w(L(mk

Ω\oj , w))]

where SC is the cosine similarity function, L is a loss function
and mk

Ω\o is a supernet with operation o disabled on edge k.
In practice, temporary models with a single disabled oper-

ation over the target edge are created. The pairwise gradient
matching values are stored in a matrix. Finally, operation
groups are created by min cut optimization on the matrix.

Differently from few-shot NAS, GM-NAS does not fine-
tune sub-supernets starting from the weights of the supernet,
as co-adaptation effects might already exist at this point. In-
stead, sub-supernets are trained from scratch. Because gradient
matching based splits lead to fewer sub-supernets than exhaus-
tive splits, it is less costly to evaluate deeper levels of the
splitting tree.

2.3 Zero-shot NAS
While weight sharing in one-shot frameworks can signif-

icantly reduce the cost of NAS, it cannot go below the cost
of training the supernet. In contrast, zero-shot NAS methods
that completely bypass training at any stage of the search have
been proposed. These methods rely on zero-cost proxies to
guide the search, which can be computed using a single batch
of input data from a freshly initialized model.

In [1], the authors use a naive baseline proxy gradnorm,
and saliency metrics inspired by the neural network pruning
literature, namely snip, grasp and synflow. These zero-
cost proxies can be used to warmup or guide a reinforcement
learning or evolutionary-based search algorithm. In [11], it
is proposed to form a matrix from the binary codes of ac-
tivations and use it to estimate the best architecture in the

space in a greedy fashion. We hereafter refer to this metric as
jacobcov.

Another idea explored in [3] is to combine the strengths of
two zero-cost proxies and iteratively prune a supernet into a
single-path network. Intuitively, the condition number of the
Neural Tangent Kernel (NTK) [8] is a proxy for the trainability
of the model, while the number of linear regions estimates the
expressivity of the model. The two metrics are normalized
and summed to select which operations to prune at each step.
These metrics are hereafter referred to as ntk and lr.

3 Methods

3.1 Supernet splitting framework

Algorithm 1: Constant policy

1 Let S a supernet, N a target number of leaf
sub-supernets, b a branching factors, m a metric

2 S = {S}
3 n← 0
4 while n× b ≤ N do
5 Split every element of S into b sub-supernets with

metric m and obtain S̄ = {S̄i}[1,card(S)×b]

6 S← S̄
7 n← card(S)

8 end

Few-shot NAS [16] and GM-NAS [7] introduce the supernet
splitting problem. Given an initial supernet representing a
search space, we seek to sequentially select edges and split
operations along these edges in such a way to minimize co-
adaptation. Following the foundations laid out by GM-NAS,
we leverage metric evaluation of the sub-supernets as the main
heuristic for deterministic splits. To this end, we employ
various metrics introduced in the zero-shot NAS literature.
We generalize GM-NAS as a framework with three distinct
components :

Splitting policy. Given the supernet as input, the splitting
policy constructs the complete tree of sub-supernets by defin-
ing at each stage the edge to split along and a branching factor
- the number of operation groups to form. The groups are cre-
ated by solving a min-cut optimization over a distance matrix
formed using any metric.

Training. Following GM-NAS, every leaf sub-supernet from
the splitting tree is trained from scratch. While some warmup
epochs can occur between splits as part of the splitting policy,
resetting weights ensures that leaves do not suffer from any
co-adaptation effects inherited from the supernet.

Search. Search for an optimal architecture is conducted over
leaf sub-supernets. The type of optimization to conduct (re-
inforcement learning, evolution, Bayesian optimization) is a
core part of this component. A heuristic to choose which
sub-supernet to explore should also be included.

2



We leave the design of search algorithms tailored to the
few-shot framework to future work. In this work, we focus on
establishing a splitting policy and evaluating the influence of
various metrics on the splitting tree.

We present the naive constant policy (Algorithm 1), where
sub-supernets are iteratively splitted following a constant
branching factor at each step. Considering its simplicity and
proximity with GM-NAS, this policy can serve as an effective
baseline which we use going forward. However, the possibili-
ties brought by splitting policies are not limited to this simple
baseline policy. Policies can be driven by heuristics - e.g. in-
creasing the number of splits at each level to progressively
decrease the diversity of architectures in each sub-supernet.
Further, the policy can be designed as a hyperparameter opti-
mization problem over the number of splits at each branch of
the tree.

We implement gradient matching gm [7] as well as
gradnorm, snip, grasp, synflow [1], jacobcov [11],
ntk and lr [3] for use within our framework.

3.2 Split distance
While benchmarking metrics is conveniently done in a su-

pernet splitting framework, there are numerous ways in which
a search phase can be implemented. When evaluated on search
performance such as test accuracy, we can expect different
metrics to perform well for different search phases.

Consequently, gaining deeper insight on the behavior of
the metrics is valuable and can lead to choosing metrics more
suited to the search phase a priori.

In order to compare the impact of metrics on the splitting
tree, we introduce the split distance.

Definition 1 (Split distance) LetO a closed set of operations,
A and B sets of disjointed, complementary sets of O :

A = {A1, A2, . . . , An}

s.t.

{ ⋂n
i=1 Ai = O

∀i, j ∈ [1, n], Ai

⋃
Aj = ∅

(1)

∀o ∈ O, let us define Go,A, Go,B the sets of elements of O
that are in the same set of A and B as o, respectively.

Go,A = {i ̸= o|i ∈ A, o ∈ A,A ∈ A}

We define the split distance as :

S(A,B) = 1

2 · card(O)− 1

∑
o∈Ω

[
∑

i∈Go,A

1i/∈Go,B+
∑

i∈Go,B

1i/∈Go,A ]

Intuitively, the split distance counts how many operations
need to be moved in split A in order to obtain split B. By
reparameterizing O into natural space N, we can verify that
the split distance satisfies all properties of a distance function.

4 Experiments
We study the behavior of splitting trees created by various

metrics under two settings : internal and external. Under the
internal setting, a split created by a metric is compared to every
split located in the same splitting tree, following the same

gradnorm gm jacobcov ntk snip grasp synflow lr
0

0.5

1

1.5

2

Metric

Sp
lit

di
st

an
ce

(a) Internal split distance

gradnorm gm jacobcov ntk snip grasp synflow lr
0

0.5

1

1.5

2

Metric

Sp
lit

di
st

an
ce

(b) External split distance

Figure 1 – Fig 1a : internal split distance represents the aver-
age distance of splits to other splits from the same splitting
tree. Fig 1b : external split distance represents the average
distance of splits to other splits in splitting trees obtained with
a different seed.

seeding. Metrics which score low on internal split distance
tend to group the same operations together and can be expected
to provide meaningful knowledge on the intrinsic properties
of operations. In contrast, metrics which score high tend to
group different operations together at different stages of the
splitting tree and can be expected to better take into account the
importance of operations relative to their edge-wise location in
the cell. Under the external setting, a split created by a metric
is compared to splits located in other splitting trees, following
different seedings. While mean values are expected to be
closely related to internal split distance values, high variance
in the external setting can indicate that the metric has poor
robustness to random initialization.

We compute internal and external split distance over 10
seeds for a splitting tree of depth 3 following the constant pol-
icy with branching factor 2 - i.e there are 8 leaf sub-supernets.
The considered search space is NAS-Bench-201 [5] and the
supernet is trained on CIFAR-10 [9]. The results for all con-
sidered metrics are reported in Fig 1.

We observe two major ways in which metrics behave. Met-
rics such as gradnorm, snip or synflow produce sim-
ilar splits most of the time with high consistency. On the
other hand, metrics such as jacobcov, ntk and lr produce
widely different splits at various edges of the same splitting
tree, displaying high expressivity. We deepen the analysis by
computing split distances level by level. In this experiment,
splits are only compared against other splits at the same depth
level in the splitting tree. We report the results in Fig 2.

Results confirm the clear partition between metric types.
We show that several metrics consistently generate the same

3



0

0.5

1

S
p
li
t
d
is
ta
n
ce

gradnorm gm jacobcov

ntk snip grasp

synflow lr

0 1 2
0

0.5

1

Splitting tree depth

S
p
li
t
d
is
ta
n
ce

Figure 2 – Split distance grouped by depth in the splitting tree.
Top : internal split distance. Bottom : external split distance.

splits until reaching the third split, while others generate a
diverse array of splits starting from the second split. This stark
contrast in behaviors could indicate that metrics have different
roles from one another and might be more effective when
used jointly to maximize the exploration versus exploitation
tradeoff. We leave such analysis to future work.

5 Conclusion
We introduce a framework to efficiently split supernets us-

ing any metric and use it to gain deeper insight on various
metrics from the zero-shot NAS literature. We introduce the
split distance as a tool to compare and contrast splitting trees
generated by these metrics and evidence the drastic difference
in their behavior, indicating that the choice of such metric is an
important hyperparameter engineering point for the few-shot
NAS line of methods.

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas Donald Lane. Zero-cost proxies
for lightweight {nas}. In International Conference on
Learning Representations, 2021.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph,
Vijay Vasudevan, and Quoc Le. Understanding and sim-
plifying one-shot architecture search. In International
conference on machine learning, pages 550–559. PMLR,
2018.

[3] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neu-
ral architecture search on imagenet in four {gpu} hours:
A theoretically inspired perspective. In International
Conference on Learning Representations, 2021.

[4] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas:
Rethinking evaluation fairness of weight sharing neural
architecture search. In Proceedings of the IEEE/CVF In-

ternational Conference on computer vision, pages 12239–
12248, 2021.

[5] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending
the scope of reproducible neural architecture search. In
International Conference on Learning Representations,
2020.

[6] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling.
In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XVI 16, pages 544–560. Springer, 2020.

[7] Shoukang Hu, Ruochen Wang, Lanqing Hong, Zhen-
guo Li, Cho-Jui Hsieh, and Jiashi Feng. Generalizing
few-shot nas with gradient matching. arXiv preprint
arXiv:2203.15207, 2022.

[8] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: Convergence and generalization in
neural networks. Advances in neural information pro-
cessing systems, 31, 2018.

[9] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multi-
ple layers of features from tiny images. 2009.

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: Differentiable architecture search. In Interna-
tional Conference on Learning Representations, 2019.

[11] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J
Crowley. Neural architecture search without training. In
International Conference on Machine Learning, pages
7588–7598. PMLR, 2021.

[12] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and
Jeff Dean. Efficient neural architecture search via param-
eters sharing. In International conference on machine
learning, pages 4095–4104. PMLR, 2018.

[13] Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. Regularized evolution for image classifier ar-
chitecture search. In Proceedings of the aaai conference
on artificial intelligence, volume 33, pages 4780–4789,
2019.

[14] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasude-
van, Mark Sandler, Andrew Howard, and Quoc V Le.
Mnasnet: Platform-aware neural architecture search for
mobile. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2820–
2828, 2019.

[15] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu
Musat, and Mathieu Salzmann. Evaluating the search
phase of neural architecture search. In International
Conference on Learning Representations, 2020.

[16] Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo
Fonseca, and Tian Guo. Few-shot neural architecture
search. In International Conference on Machine Learn-
ing, pages 12707–12718. PMLR, 2021.

[17] Barret Zoph and Quoc Le. Neural architecture search
with reinforcement learning. In International Conference
on Learning Representations, 2017.

4


	Introduction
	Related Works
	One-shot NAS
	Few-shot NAS
	Zero-shot NAS

	Methods
	Supernet splitting framework
	Split distance

	Experiments
	Conclusion

