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Résumé – La segmentation sémantique consiste à associer une étiquette ou une catégorie à chaque pixel d’une image. Afin
d’éviter l’annotation de l’ensemble des pixels des images des bases d’apprentissage, qui est très coûteuse, une alternative consiste à
utiliser des annotations dites faibles comme les catégories présentes dans les images. On parle alors de segmentation sémantique
faiblement supervisée. Ces approches font généralement appel à des cartes d’activation par classe (CAM). Cependant, ces CAM
ne se concentrent que sur les régions discriminantes de l’image, ce qui limite leur qualité. Des méthodes de post-traitement
sont généralement proposées pour améliorer les masques générés, utilisés dans l’algorithme de segmentation. En effet, ceux-ci
conditionnent fortement le résultat final de segmentation. Ces traitements sont essentiellement basés sur des informations de faible
résolution, obtenues en sortie du réseau de neurones convolutionnels. Nous proposons ici d’exploiter des sorties de couches en
début du réseau afin d’intégrer des informations de plus haute résolution via un algorithme de type machine à vecteurs de support
(SVM). Les expérimentations montrent une amélioration par rapport aux approches de la littérature.

Abstract – Semantic segmentation aims to assign each pixel in an image to a semantic category. To avoid expensive annotating of
all pixels in training images, weakly supervised semantic segmentation with weak annotations such as the image-level labels is used
as an alternative approach. It is a common practice to utilize Class Activation Map (CAM). However, CAM only focuses on the
discriminative regions which limits its quality. Post-processing methods are generally proposed to improve the generated masks,
which greatly improve the final segmentation results. However, most post-processing methods rely on low resolution features from
the outputs of the convolutional neural networks. In this work, we propose a method that leverages early layer outputs to integrate
high-resolution features via a support vector machine (SVM) algorithm. Experiments demonstrate improvement compared with
state-of-the-art methods.

1 Introduction
Semantic segmentation is a popular task in computer vision

which requires labor-intensive pixel-level manual annotation.
Compared to classification labels, giving segmentation annota-
tion is considerably more time-consuming [3]. To reduce the
annotation burden, weakly supervised semantic segmentation
(WSSS) approaches have been proposed using weaker supervi-
sion [1, 7, 8, 10]. In this paper, we focus on weakly supervised
semantic segmentation with only image-level labels due to it
is the easiest and cheapest available annotation.

Almost all the latest WSSS algorithms with image-level
labels require a two-stage pipeline. To start with, class activa-
tion map (CAM) [11] is generated from a trained classification
network. Based on CAM, pseudo mask is obtained by a refine-
ment process. Secondly, pseudo mask is used to train a fully
supervised semantic segmentation model. In order to get the
high quality pseudo mask, recent methods focus on improv-
ing the performance of CAM, or finding efficient refinement
process to fully utilized the given CAM.

However, there are two limitations for recent refinement
methods. Firstly, most of them focus on the prediction from
CAM and high-semantic deep features with low resolution.
Generally, the resolution of CAM and deep feature is 1/8 or
1/16 compared with the initial size of the image. A simple in-
terpolation resize process can not recover the details especially
among the boundary of objects. Secondly, the refinements
show no partiality and miss the chance to analyze disparity in
prediction of CAM for different images in the dataset.

Therefore, we introduce a refined pixel-labeling process
that uses not only deep semantic feature to generate CAM and
initial seed, but also shallow features with high resolution to
obtain better prediction with details. Different with methods
which are handled without consideration for differences among
images, our method trains an image-specific classifier to make
pixel-wise segmentation.

The proposed method have three steps. Firstly, we generate
CAM and initial seed from a trained classification network.
Then, high precision reliable data is obtained. Specifically,
we select train sample from the confident regions and exclude
noisy false-positive samples by using an image-specific back-
ground prototype. Finally, a self-enhanced SVM is trained
to make the final segmentation. The train label for the self-
enhanced SVM is allowed to be updated. In this case, un-
certainty is decreased and mistakes made by the initial errors
are corrected as the training goes on. As a common practice,
dCRF [6] is used as post-processing method to improve the
prediction. The pipeline of our method is illustrated in Figure
1.

The rest of the paper is organized as follows: After giving
detailed explanation about our method in the Section 2, the
experiments setting and sufficient results for the method are
presented in the Section 3. Finally, we draw a conclusion and
plan the future work in the Section 4.

mailto:zhengyang.lyu@utt.fr
mailto:pierre.beauseroy@utt.fr
mailto:alexandre.baussard@utt.fr


Figure 1 – Pipeline of the proposed method.

2 Proposed Method
This section describes the proposed method, as shown in

Figure 1. Firstly, we explained the process to obtain CAM
and initial seed from a trained classification network. Then,
pixel-wise train sample is generated. In order to collect data
with high precision labels, we use probability-related selec-
tion to sample data with high confidence, and image-specific
background prototype to exclude noisy foreground. Finally,
the self-enhanced SVM is trained to predict pixel-wise labels
for each image.

2.1 CAM and Initial Seed
Firstly, followed by the steps in the multi-stage WSSS

pipeline based on CAM [11], we start to train a classification
Convolutional Neural Network (CNN) with only image-level
labels. I is defined as the input image with image-level label y.
The class vector of the dataset is C and the output feature F
of the last convolutional layer has |C| channels. Then a global
average pooling layer pools feature F to a vector f of size
|C|. We calculate the classification loss by using a multi-label
soft margin loss function, which is formulated as follows:

Lcls = − 1

|C|

|C|∑
c=1

yclog (σ(f c)) + (1− yc)log (1− σ(f c))

(1)
where σ is the sigmoid function.

The class activation map Ac for class c is obtained by nor-
malizing the class-specific feature F c from last convolution
layers, as follows:

Ac =
ReLU(F c)

max(ReLU(F c))
(2)

Then, we directly utilize the CAMs of given classes c′ to

generate the initial seed M by thresholding their scores with
Tfg and Tbg, for foreground and background respectively, as
follows:

Mi =


0, if max

c′
(Ac′

i ) < Tbg

argmax
c′

(Ac′

i ), if max
c′

(Ac′

i ) > Tfg

−1, otherwise

(3)

Mi is the pixel-wise prediction from CAM for pixel i in the
image I . Mi = −1 is regarded as uncertain regions which
exist in the boundary between object and background generally.
c′ is the given labels that c′ ∈ y.

2.2 Data Preparation
The goal of data preparation process is to collect data with

high precision labels.
Obtained from CAM, the initial seed M is too noisy to be

used as the segmentation result. As extensively elaborated,
CAM only focuses on the discriminative regions and does not
cover all the object, which causes low precision of foreground
in M . A two-step process is proposed. Our intuition is to
select data as reliable as possible with only in-hand information
given from the CAM Ac and the initial seed M .

(1) Probability-related selection.
We define pci as the probability to select data from pixel i as

a sample for class c:

pci =
P c

i 1(Mi = c)∑
n∈I P

c
n ∗ 1(Mn = c)

(4)

1(·) outputs 1 if the argument is true or 0 otherwise,

P c
i =

max(Ac
i − Tfg, 0)

1− Tfg
(5)



In experiments, we found that the background from M
gives high precision, which means most of the background
labels are reliable. As a result, we select background data
uniformly and randomly from the pixels {i|Mi = 0}, specifi-
cally,

p0i =
1(Mi = 0)∑

n∈I 1(Mn = 0)
(6)

p0i is the probability to select pixel i as background sample.
For each pixel k in the image, if it is not in the uncertain

regions, it will be selected at most one time. Based on the
rules above, a subset of pixels J is drawn from the image I ,
i.e. J ⊆ I .

(2) Excluding noisy foreground.
The high precision of background in CAM is suitable to

model an image-specific background prototype. Since back-
ground has limited specific semantic, compared with deep
feature, it is sufficient to explore background in low-level vi-
sual information. Therefore, our background prototype Sbg is
computed by shallow feature and defined as follows:

Sbg =

∑
j∈J Sj ∗ 1(Mj = 0)∑

j∈J 1(Mj = 0)
(7)

Sj is the shallow feature generated from the trained classifica-
tion network in pixel j.

We assume that there are false positive predictions in fore-
ground class which share similar feature with background. In
this case, such noise is excluded using background prototype.
Cos-similarity is calculated between the background prototype
Sbg and feature Sj+ in foreground pixel j+ of J , i.e. Mj+ >
0.

wj+ =
S⊤
bg · Sj+

||S⊤
bg||||Sj+ ||

(8)

S⊤
bg is the transpose of Sbg . If wj+ > Ts, foreground pixel j+

shares too much similarity with background prototype, which
might be a false positive in prediction and should be excluded.

Finally, the pixel set K is generated, which is a subset of
J , i.e. K ⊆ J . For the pixel-wise SVM classifier, the train
label, referenced as Ytrain, is composed by Mk in spatial
index of each selected pixel k ∈ K. We unleash the potential
of shallow feature not only to detect noisy part, but also to
train SVM. Therefore, the train data, referenced as Xtrain, is
collected from all the shallow feature Sk in the same spatial
index of pixel set K correspondingly.

2.3 Self-enhanced SVM Training
After data preparation process, we obtain the image-specific

train set {Xtrain, Ytrain} and use it to train a pixel-wise
SVM classifier for each image. The image-specific infer data,
referenced as Xinfer, is composed by shallow feature Si in
spatial index of all pixel i in the image I . Taking {Xinfer}
as input, the trained SVM is used to give labels {Yinfer} for
each pixel, and finish the segmentation task for the image.

It is obvious that the performance of prediction from SVM
is related to the train label quality. However, even after the
designed data preparation process, the train label Ytrain is still
not perfect, which brings false prediction. In experiments, we
found that SVM is robust to noise input and able to correct false

train labels by itself. Therefore, we propose a self-enhanced
SVM training procedure.

Specially, when a SVM is trained, Xtrain is used as input
again to update train label Ytrain into Y ′

train by its output.
Then, the new train set {Xtrain, Y ′

train} is used to train
a new SVM. Such process is repeated after t times and the
output of the final SVM is used as the segmentation results.

Enhanced by the robustness of SVM, the train label’s quality
is improved as the training goes on. Uncertainty is decreased
and mistakes made by initial errors are corrected for the output
of SVM.

3 Experiments
In this section, we give the details for experimental settings

like dataset, evaluation metrics and implementation details
at first. Secondly, we compare our results quantitative and
qualitative with recent methods using the PASCAL VOC 2012
train set.

3.1 Experimental Settings
Dataset and Metrics. Our approach is evaluated on PAS-

CAL VOC 2012 dataset [3], which has 20 foreground classes
and 1 background class. The official dataset is split into train
set, validation set and test set, which contains 1464, 1449 and
1456 images. For now, we evaluated our segmentation results
on the train set. Following most previous work, the classi-
fication network is firstly pre-trained on ImageNet [2], then
further trained on an augmented train set [4] of PASCAL VOC
2012 dataset. The augmented set contains 10582 images.

We compare results obtained from the proposed method
with the published results from the other recent methods
[1, 7, 8, 10]. As a common evaluation metric, we use mean in-
tersection over union (mIoU) to evaluate segmentation results.

Implementation Details. In our experiments, we use SIPE
[1] as the baseline method to obtain CAM and initial seed. As
implemented by SIPE, ResNet-50 [5] is adopted as the back-
bone network. In order to improve the quality of initial seeds,
CAM is generated by using multi-scale images as inputs. The
scale ratios are {0.5, 1.0, 1.5, 2.0}. We select feature from the
second stage of the backbone network as the shallow feature
S since it is in high resolution and has appropriate semantic
information. The spatial size of selected feature is 1/4 of initial
image size. In order to improve the divisibility of features,
shallow feature is z-score normalized. After the prediction of
SVM, dCRF is used as post-processing to refine the generated
localization maps. For each class including background, we
select 2500 samples for the sample set J . We empirically set
Tfg = 0.2 and Tbg = 0.05 to obtain initial seed, and set sim-
ilarity threshold Ts = 0.2 for excluding noisy in foreground.
In our experiments, self-improved SVM cyclic is repeated 5
times.

3.2 Results
Table 1 shows the quantitative comparison between our

method with the baseline and other state-of-the-art methods.
Compared with the baseline method [1], our method improve
the mIoU by 2.65% on initial seed and 1.47% after dCRF
process. Besides, our method exceeds other state-of-the-art



Figure 2 – Qualitative segmentation results on VOC 2012 train.

methods. These results suggest that, our approach is able to
effectively leverage shallow feature to recover details for the
objects, and predictions of proposed method are more accurate
to match the ground truth segmentation masks.

Figure 2 presents qualitative results from the baseline
method and our method without (w/o) and with (w/) dCRF pro-
cess. Generally, compared with baseline method, our method
shows better performance in recovering details and distinguish
background and objects. The dCRF refinement process is able
to remove noise produced by isolated pixels, since dCRF takes
the surrounded pixels’ prediction into consideration.

Table 1 – mIoU (%) of seeds and refined maps on PASCAL
VOC 2012 train set. The best results are shown in bold.

Method Backbone Seed + dCRF

VWL-L [8] ResNet-101 57.3 63.0
MCL [10] EfficientNet [9] 58.4 64.6
SIPE [1] ResNet-50 58.6 64.7
Iter_dCRF [7] ResNet-50 60.6 62.7
Ours ResNet-50 61.4 66.2

4 Conclusion
Using only image-level label, we propose a refined pixel-

labeling process for weakly supervised semantic segmentation
method. In the proposed method, we generate CAM from
an image classification CNN and efficiently sample reliable
data from the given CAM by probability-related selection and
exclusion of ambiguous regions. In addition, a self-enhanced
image-specific cyclic SVM trained with shallow feature is used
to output pixel-wise prediction and improve the segmentation.
Our experiments demonstrate that shallow feature with high
resolution is effective in improving details of segmentation,
and image-specific pixel-wise classifier is beneficial for WSSS.

In the future work, we will use multi-level feature to improve
our approach and conduct more experiments on the larger data
set likes MS COCO 2014.
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