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Résumé – Cet article présente une méthodologie pour l’étude séquentielle des signaux ultrasonores mesurés sur des rails.
L’approche se base sur une décomposition parcimonieuse en ondelettes de Gabor, couplée à du filtrage statistique sur Ensembles
Finis Aléatoires . Un exemple simulé montre la viabilité de la méthode, avant d’appliquer celle-ci à des signaux réels obtenus sur un
rail endommagé en laboratoire, à partir de capteurs générant des ondes de surface de Rayleigh.

Abstract – In this paper, we present a new methodology to process sequentially raw measurements from ultrasonic sensors with
application to rail inspection. A decomposition of signals into sets of Gabor wavelets is followed by an association step based on
Random Finite Sets with the Gaussian Mixture Probability Hypothesis Density filter. The rail geometry allows estimation of the
velocity of ultrasonic waves. A reprentative simulated set of samples is processed to demonstrate the benefit of this methodology.
Real measurements from a laboratory machined rail are then inspected to recover the characteristics of Rayleigh ultrasonic waves.

1 Introduction
Ultrasonic Non Destructive Testing (NDT) rail analyses rely

on raw measurements from a piezoelectric transducer called
A-scans. Aggregation of such data forms maps called B-scans
[10], from which anomalies can be detected, like flaws, reflec-
tions or attenuations [1]. Visual inspection is only possible
for low rates of acquisitions. At higher rates, thousands of
A-scans need to be analysed in a limited amount of time. This
problem arises in modern rail inspection. Automatic analysis
of individual A-scans has been studied in the NDT literature,
using signal processing techniques [9], but joint analysis of
A-scans has not been investigated.

Efficient methods to extract pulses features from one acqui-
sition already exist. Sparse decomposition [5] with a Gabor
dictionary is a powerful method to represent one A-scan by a
set of several vectors. However, information about the evolu-
tion of this representation, for instance propagation direction
or velocity, is lost. Purpose of filtering processes is to estimate
these hidden states from noisy measurements. Such method-
ology has already been successfully applied to various types
of data: for visual, spectral and cell tracking [6, 11]. Data is
represented on a small dimensional space. We show how an
adequate method to decompose such real signals can act as a
detector. Its results are filtered by an advanced multi-target
tracking algorithm, to jointly estimate the hidden states of
several phenomena, here the vectors representing wave pulses,
and compute their paths across A-scans.

In the present article, we introduce first the method to de-
compose each ultrasonic signal into a set of Gabor wavelets.
The filtering method for sets is next described. From a knowl-
edge of these pulses behaviours across acquisitions, we build
a model to estimate the hidden states of interest. A synthetic
dataset is created to quantify our method performances, before
application on laboratory measurements performed on a rail.

2 Sparse representation of ultrasonic
signals

In ultrasonic testing on non-dispersive and homogeneous
materials, a Gabor dictionary allows an efficient representa-
tion of signals using a very limited number of atoms of the
dictionary [2]. Additive noise or specific excitations due to
the environment will generally not respect this property. Dic-
tionary methods are therefore useful in low Signal to Noise
Ratio (SNR) situations, to extract features of interest. Ga-
bor wavelets are expressed as the product of a cosine and a
Gaussian function. The values u, f , s, A and ϕ are the arrival
time, central frequency, spread, amplitude and phase of the
Gabor wavelet. If we define γ = [u, f, s, A, ϕ]

t as the vector
describing a Gabor wavelet gγ(t), t ∈ R, we write:

gγ(t) = A exp
(
− (t− u)

2
/s
)
cos (2πft+ ϕ) (1)

A signal y is said to be sparse on a Gabor dictionary if only
few of its elements need to be used to represent this signal, if
M vectors γ(1), ..., γ(M) exist such that:

y(t) ≈
M∑

m=1

gγ(m)(t) (2)

The Matching Pursuit (MP) algorithm 1 aims to solve sequen-
tially the decomposition equation 2 [5]. It searches iteratively
in a dictionary D the atom with the higher inner product with
y (in practice in the sub-dictionary D̃ with unit atoms with
parameter γ̃ = [u, f, s]

t), and removes it to create a residual r,
used as the new signal. An optimization procedure (e.g. Gauss-
Newton), is applied to fine-tune the atom. In our application,
we manipulate discrete signals y of size N ∈ N. The sampling
frequency is fs, and the time interval separating each point of
an acquisition is thus ∆t = 1/fs.
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Algorithm 1: Matching Pursuit algorithm
Input: y, M
Output: {γ(m)}1≤m≤M

Initialization: m = 1, r = y;
while m ≤M do

γ̃⋆ = argmax
γ̃∈D̃

|⟨r, gγ̃⟩| ;

γ⋆ = [γ̃⋆ t, A⋆, ϕ⋆]
t with A⋆, ϕ⋆ from ⟨r, gγ̃⋆⟩;

γ(m) = argmax
γ∈D

∥r − gγ∥22 (starting from γ⋆);

{γ(l)}1≤l≤m ← {γ(l)}1≤l≤m−1 ∪ {γ(m)};
r ← r − gγ(m) ;
m← m+ 1;

end

Ultrasonic measurements give K ∈ N acquisitions along
the rail, each consisting of a vector yk, for 1 ≤ k ≤ K.
Each is decomposed into a sum of M atoms. We note Γk the
set of Gabor parameters obtained from the decomposition of
acquisition yk, with Γk = { γ(m)

k | 1 ≤ m ≤M}.
Each Gabor vector γ

(m)
k belongs to the state space G =

R × R+ × R+ × R∗
+ × [0, 2π[ where R, R+ and R∗

+ de-
notes the set of real, positive real number and strictly positive
real numbers. The sequence of measurements (yk)1≤k≤K

is therefore replaced by a sequence of sets. However, these
sets can be corrupted with wrong detections made by the MP
algorithm, called clutters, due to background noise.

3 Filtering with Random Finite Sets
First, one need to filter the set of atoms, to remove abnor-

mal detections, named the clutters, to keep the wave pulses
of interest, called the targets. In addition, it is necessary to
perform associations between vectors of each step, to estimate
the hidden variables. If a knowledge of the evolution of the Ga-
bor vectors through acquisitions is available, for instance from
physical theories, associations between vectors of Γk−1 and
Γk are possible. In the following, instead of the vector γ, we
will drop the phase ϕ, to constitute the vector z = [u,A, f, s]

t.
Sets Γk are thereby replaced by the sets Zk.

A simple solution to the association problem is to minimize
distances between vectors [6]. At each step an assignment
matrix C is computed, with

Cij = wu(u
(i)
k−1 − u

(j)
k )

2
+ wA(A

(i)
k−1 −A

(j)
k )

2
(3)

the cost to assign state i of step k − 1 to state j of step k.
Weights to be chosen are only wu an wA. The Hungarian algo-
rithm is applied on costs above a threshold T to minimize the
total cost. This methodology, referred here as the Assignment
Tracker (AT), does not take into account the pulse dynamic.

Random Finite Set (RFS) theory developed by Mahler [4]
provides a solution to perform filtering on sets. At each step k,
the RFS formulation allows to model the appearance of new
targets by the birth intensity γB , and the clutter process by an
intensity κ. It offers a probabilistic solution to model simple
phenomena arising in multi-target tracking, such as disappear-
ance and miss-detection of targets. The problem is formulated
as the estimation of a single targets set Xk producing Zk. Each

target is defined on a space X . In our case, this space includes
the hidden information about the wave pulses.

The function Dk|k(x), defined on X , is called the Intensity,
or Probability Hypothesis Density (PHD). It is the first moment
of the multi-target posterior, which is intractable in the general
case. The PHD Filter [4, 13] aims to provide an estimate of
Dk|k(x) for each time k. An estimate X̂k of the state set Xk

can then be obtained. It has linear complexity in the numbers
of measurement vectors and targets, and can be decomposed
into two steps:

1. PHD Prediction: Using information of Dk|k(x), the
transition equations, the birth and survival information,
we get the predicted intensity Dk+1|k(x);

2. PHD Update: Using the measurement set Zk, the
clutter and detection information, we compute, from
Dk+1|k(x), the updated intensity Dk+1|k+1(x).

An analytical implementation of this filter is available, under
linear Gaussian assumptions: the Gaussian Mixture PHD (GM-
PHD) filter. The intensity can then be described as the sum of
Gaussian components, allowing to use the Kalman equations
to compute the predicted and updated intensities [13]. This
filtering process is the one used in this article, applied on the
set provided by the MP algorithm, which acts as a detector.
An improvement of the method allows an adaptive filter [3]
using an uniform birth intensity. The association of filtered
states is performed in a simple way, thanks to a tag given to
each individual Gaussian component, and management of the
tag through iterations [7]. After each update, the tags of states
are extracted to produce the track identities T . Our complete
methodology is described in algorithm 2.

Algorithm 2: Iteration of Gabor wavelets Tracker
Input: yk, M , Dk−1|k−1(x)

Output: X̂k, Tk
Zk ← MP(yk,M);
Adapt birth intensity bk with Zk;
Dk|k−1(x)← Predict(Dk−1|k−1(x), bk);
Dk|k(x)← Update(Dk|k−1(x), Zk);
X̂k ← StateExtraction(Dk|k(x)) ;
Tk ← TagExtraction(Dk|k(x)) ;

Main advantage of RFS filtering is the possibility to per-
form online estimation, contrary to joint decomposition and
tracking methods [6], allowing large amount of acquisitions to
be processed. In addition, classical Particle Filter approaches
rely on a single state vector with a huge and limited dimension.
The complexity of the GM-PHD filter increases only linearly.

4 Synthetic experiment

4.1 Synthetic ultrasonic data generation
We first apply the estimation process on synthetic data. We

model the one dimensional propagation of surface wave pluses
of velocity v on a rail. An ultrasonic emitter (E) and a receiver
(R), separated by a distance d, are moved along the rail ac-
cording to the x-axis between acquisitions, see figure 1. The x
coordinate of emitter is noted by the variable x, which takes
values indexed by the integer k such that xk = xk−1 + ∆x,
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Figure 1 – Rail representation with the emitter (E) - receiver
(R) system.

Figure 2 – Example of simulated B-scan.

with x0 = 10 cm and ∆x = 1.5 cm. The emitter gener-
ates two pulses which propagate in opposite directions in the
medium. A pulse is assumed to be reflected by each border
of the rail, l1 = 0 cm for the left one and l2 = 100 cm for
the right one. Arrival times of a wave pulse are denoted by
the variable ũ

(i)
k , with i the pulse index, defined by: 0 for the

front pulse which directly arrives to the sensor, 1 for the back
pulse which is reflected by the left border, and 2 for the front
pulse reflected by the right border. We generate 40 acquisi-
tions, with fs = 4MHz and 2000 samples. The sequence
{ũ(0)

k }0≤k≤K−1 should therefore contain equal values. The
slope of {ũ(1)

k }0≤k≤K−1 and {ũ(2)
k }0≤k≤K−1 should equal

the pace, defined as p = ±2v−1.
In our experiments, a wave with vR = 3000m s−1 and

central frequency = 0.3MHz is first emitted, followed after
20 µs by a wave with vP = 2700m s−1 and central frequency
= 0.75MHz. Acquisitions are corrupted with white Gaussian
noises, whose standard deviations are calculated to reach SNR
of 10 dB and 0 dB. Figure 2 shows several generated signals.
In the following, to reduce the notation burden, unities for x
coordinate, time signal and u, frequency and scale are chosen
to be respectively cm, µs, MHz, and µs2.

4.2 Wave pulse modelling
For one specific wave pulse, we model its behaviour by

a state vector x = [u, pu, A, pA, f, s]
t, with pu and pA the

u-paces and A-paces related to variables u and A. In ad-
dition to u, we therefore allow linear variations of A. The
observation vector z from the MP algorithm is described as
z = [u,A, f, s]

t. All perturbations are assumed to be Gaus-
sian, giving the following state-observation model for one
target:

xk = Fxk−1 + ηk (4)
zk = Hxk + ϵk (5)

with ηk ∼ N(0, Q) and ϵk ∼ N(0, R), where F =
diag([F̃ , F̃ , 1, 1]) and Q = diag([q1Q̃, q2Q̃, q3, q4]) with in-

(a) Tracks of GM-PHD Tracker

(b) Tracks of Assignment Tracker

Figure 3 – Visualization of Gabor waves trajectories from
simulated B-scan.

termediate matrices defined by:

F̃ =

[
1 ∆x
0 1

]
and Q̃ =

[
∆x2/3 ∆x/2
∆x/2 ∆x

]
(6)

with q1 = q2 = q3 = 0.1 and q4 = 10. The observation
noise is assumed Gaussian, independent for each dimension,
with R = diag([σu, σA, σf , σs]) = diag([10, 1, 0.1, 1]). Prob-
abilities of detection and survival are respectively set to 0.95
and 0.90. For each measurement, we create 3 newborn tar-
gets with hidden u-paces equal to 2/v, −2/v or 0, and A-
paces to 0. The chosen value of v = 0.27 allows a balance
between real vR and vP . Each newborn target has initial co-
variance matrix PB = diag([1, 1, 1, 1, 1, 100]), and weight
wB = 1e−8. Assuming u, f , s and A restricted to intervals
[0, 500], [10, 100], [0.1, 1] and [0, 5], the total space volume is
therefore V = 500× 0.9× 90× 5. Lastly, the clutter rate per
acquisition λ is set to 2 if M = 5, and 5 if M = 10.

An interesting fact is the possibility to calculate the multi-
target likelihood of the data sets given a parameter vector θ,
noted p(Z1, ..., ZM | θ). A manual calibration process is
done as in this article, to find the parameter vector θ⋆ which
maximizes this likelihood: θ⋆ = argmax p(Z1, ..., ZM | θ).

The Assignment Tracker parameters are set to: wu = 0.01,
wA = 1 and T = 25 for baseline results. The u-pace is
computed from the tracks by differentiation.

4.3 Results
The average optimal sub-pattern assignment (OSPA) metric

[12] can be used to compute the distance between real state
sets and the ones estimated by the GM-PHD and Assignment
Trackers. Values are averaged over all the steps. Results are
gathered in table 1, for the two SNR levels. Simulations are
repeated 25 times for Monte Carlo estimates.

In the high SNR scenario with limited iterations of the MP
algorithm, both methods show similar results. Since the num-
ber of MP iterations M is near the real number of wavelets, no
advanced filtering process is needed. Differences between the
two methods appear when the level of noise increase, or when
M exceeds the real number of pulses. Since the assignment
method does not take into account vector dynamic, and only
relies on distance calculation between vectors, it can be prone
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Table 1 – Mean OSPA, averaged over 25 Monte Carlo simula-
tions. Mean is displayed, standard deviation given in brackets,
bold for higher value on each row.

MP iterations SNR GM-PHD AT

5 10 0.70 (0.0025) 0.71 (0.0064)
10 10 0.72 (0.0036) 0.84 (0.016)
5 0 0.76 (0.0098) 0.79 (0.012)
10 0 0.77 (0.015) 0.88 (0.012)

Figure 4 – Ultrasonic B-scan from machined rail (black for
high absolute values) with estimates from the filtering process.

to wrong associations, and most particularly when targets are
crossing. The GM-PHD tracker performs separation between
clutter and real wavelets. A drawback is the delayed estima-
tion, because the filter needs iterations to confirm a new track.
Visual analysis of tracks for high SNR and M = 5 in figure
3 highlights this phenomenon. Brown dots represent the MP
estimations. Coloured lines are the results from trackers.

5 Real data experiment
Using Electro-Magnetic Acoustic Transducers [8], a tech-

nology to generate Rayleigh surface waves on ferromagnetic
materials, we inspect a 1m rail. Cracks of 5mm have been
machines at positions 31, 46, 61 and 76 cm. Parameters are:
d = 8 cm, fs = 25MHz, N = 5000 samples, x0 = 0 cm and
∆x = 1 cm. M = 92 signals are obtained.

Same model is applied to the data, but only visual inspection
can be performed. Small reflections from cracks can easily be
identified in figure 4. Left part shows the B-scan, with each row
representing one A-scan, with amplitude proportional to the
level of grey colour. Middle and right parts show estimations of
u and u-paces. Velocity of reflected waves is near 2950m s−1,
which is a consistent value for a surface wave velocity.

6 Conclusion
We have presented a new methodology to analyse sequences

of ultrasonic measurements thanks to a sparse decomposition
scheme. Extracted components are then associated with a
probabilistic filter, to estimate online their behaviour evolution.
Application on ultrasonic rail testing showed the ability of this
methodology to identify pulses paths and reflections on cracks,
with identification of their velocity.
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research and innovation programme and the Shift2Rail JU
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