MDGNet: a light-weight, hardware-compliant Convolutional Neural
Network for efficient image inference tasks

Van Thien NGUYEN
Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France

William GUICQUERO

Résumé — La conception des réseaux de neurones dédiée a des architectures micro-électroniques frugales est désormais primordiale
pour limiter le cofit des algorithmes d’inférence implémentés au sein de systemes embarqués. Dans cet article, nous proposons un
modele de réseau compact, MDGNet, dédié a la classification d’images. Pour obtenir ce modele compressé, MDGNet s’appuie sur
une combinaison d’éléments de factorisation tels que les convolutions séparables et convolutions par groupe. Par ailleurs, ce modele
tire profit d’interconnexions réalisées a I’aide d’un Multiplexeur contr6lé dynamiquement et permettant une forte compatibilité
avec une approche de co-conception matérielle impliquant une forte quantification, comme reporté dans cet article. Les résultats
expérimentaux sur deux bases de données (STL-10, CelebA) démontrent une excellente performance de cette approche, pour un
colit en mémoire et complexité de calculs réduits.

Abstract — Designing hardware-compliant deep neural networks is ubiquitous to favor low-power but accurate embedded inference.
In this paper, we introduce a compact convolutional network architecture, namely MDGNet, dedicated to classification tasks.
MDGNet relies on depth-wise convolutions combined with a cascade of group convolutions to promote light-weight feature
processing blocks. On the other hand, a Mux-skip connection (presented in a previous work) is used to fuse these components
together in a hardware-compliant manner, compatible with a quantization of the model. Experimental results on two different
datasets (STL-10, CelebA) demonstrate that our model allows higher performance at lower model size and computational complexity

compared to prior works.

1 Introduction

Convolutional Neural Networks (CNNs) have recently be-
come a standard choice in many computer vision tasks, namely
for their shift invariant property. Their great performance
strongly relies on increasingly complex model architectures
containing a huge amount of parameters and operations that
quickly bypasses the limited memory, computation capabili-
ties of devices "at the edge". Therefore, designing Hardware-
compatible tiny models —in terms of memory and computa-
tional costs— is crucial to enable accurate embedded inference
tasks. Thus, research along the line of designing compact net-
works gains considerable attention. Recent research efforts in-
volves techniques such as efficient architecture design [4}9|/16]],
pruning [[8] and weights and activations quantization [/7].

In that context, this paper introduces a novel neural net-
work architecture that is specifically tailored for mobile and
resource-constrained systems. This work relies on previously
published MOGNET [[11]], which is composed of a streamlined
convolutional factorization and a Multiplexer mechanism to
perform the skip connection in a hardware-compliant manner.
Based on this architecture, CNN layer factorization is futher
improved by a light-weight multi-branch structure consisting
of depth-wise, point-wise and group convolutions. Through
the Multiplexer (MUX) mechanism, these operations are com-
bined together in an input-dependent manner to provide output
channels capturing different levels of channel-wise and spa-
tial information. Additionally, model quantization is applied
thanks to a dedicated quantization-aware training to reduce the
hardware-related costs. Building upon these components, our
tiny model MDGNet exhibits an accuracy of 77.18% on the
STL-10 dataset, with only 0.07MB parameters.

2 Related works

Efficient architecture design is the straightforward ap-
proach for matching CNNs with hardware constraints, simpli-
fying the hardware-expensive standard convolution layers. To
this end, simpler convolution layers (e.g., depth-wise, point-
wise, group convolution) as well as the residual connections [J5]
and many other light-weight types of layers have been intro-
duced into the available design space. These architectures can
be designed specifically by human intuition and experience
(e.g., MobileNets [12]), or automatically under the framework
of Neural Architecture Search (e.g., EfficientNet [14]]). The
proposed MDGNet extends MOGNET [11] by leveraging a
multi-branch skip-connection strategy. In particular, MDGNet
integrates a cascade of two group convolutions, enabling to
learn representations at different spatial and channel scales.

Model pruning aims at removing redundant operations,
neurons and weights to improve the hardware-algorithm com-
promise of CNNs. The pruning mask can be determined by
different criteria with traditionally fixed pattern [6L/8]], or in
an input-driven manner, where the pruning mask is adaptively
changed according to the input data [1]. In our work, the
MUX mechanism can be considered as a dynamic pruning
strategy, where each output channel of the light-weight depth-
wise convolutions is used to determine whether to perform the
operations in the main branch of the group convolutions.

Network quantization [7|] aims at reducing the precision
of weights and activations in order to enable low-bitwidth
arithmetics while reducing the overall memory requirements.
It consists in applying a mapping of full-precision values onto a
quantized representation. Note that, this function is preferably
adjusted during training [17]], 3] to cap the accuracy lowering.

mailto:vanthien.nguyen@cea.fr
mailto:william.guicquero@cea.fr

Input (H X W X C)

Input (H X W X C)
Input (H X W x C)
DWConv, s=1 GCM
PW, C/4 BN + QReLU (g, s=1)

Conv, C/2, g, s

BN + QReLU | m S L

Channe Shuffl Global Average T BN + QReLU (g, 5=2)

Pool (GAP) i ,
.
Binary Threshold| Bitshift

Half Channel , ;
Conv, C/2, g, 1 s) 0
BN + QReLU

;C
Output (g X % X C)

(a) Group Convolution Module (GCM)

Channel Shuffle

Output (H X W X C)

(b) Normal block

Channel Shuffle

Output (5 X 7 x 2C)

(c) Reduced block

Figure 1 — Details on the three main building blocks of MDGNet, with its associated internal hyper-parameters.

3 MDGNet

This section elaborates the architecture of MDGNet in detail
(cf. Table[T). We first describe the Group Convolution Module
(GCM) that enables to learn features from both 3 x 3 and 5 x 5
receptive fields at the same time. We then describe the building
blocks of MDGNet, which is built upon a light-weight branch
with depth-wise convolution and the GCM.

Table 1 — Top-level architecture description of MDGNet

Operator Input size Stride | Group | Repeat
Conv2d HxWx3 1 1 1

GCM HxWxf 2 g 1
Normal H . W

block Xy xS ! 9 2
Reduced H W

block 2 e 2 9 1
Normal H_ W

block T X X2f 1 g 2
Reduced H W

Normal H W

blOCk s X s X 4f 1 29 2
Reduced H W

Normal H w

block 16 X 16 < 8f 1 4g 2
Reduced H W

blOCk 16 X 16 X 8f 2 4g 1
Pointwise | g w

Conv 35 X 35 X 16f 1 1 1
DepthWise H w

Conv 35 X 35 XC 1 1 1

3.1 Group Convolution module (GCM)

Figure [Ta]depicts the structure of the GCM module, which
receives input of size H x W x C' and computes output of

size g X % x C'. In details, the GCM first projects the high-

dimensional input feature maps into a low-dimensional space
of only C'/4 channels using a point-wise convolution, then
learns the representation at 3 x 3 receptive field via the first
group convolution of C'/2 output channels, g groups and stride
of s. After that, we apply channel shuffie to force information
sharing across groups, before taking only the first C/4 chan-
nels to pass through the second group convolution of also C'/2
output channels, g groups and a stride of 1. Each group con-
volution is then followed by a Batch Normalization (BN) and
a QReLU activation (as in [[11]]). Finally, we concatenate the
output of two group convolutions, to obtain the CGM output.

3.2 MDGNet building blocks

Similar to previous works in designing efficient model archi-
tectures, we also propose two basic building blocks: normal
block (Figure [Ib) with output having the same size as input,
and reduced block (Figure for spatial downsampling (i.e.,
s = 2). Both of these blocks include 2 branches based on a
depth-wise convolution layer and a GCM.

The core element of the normal block is a 2-input MUX gate,
where the input I, is the output of the depth-wise convolution
branch, and the input I is the result of the addition between
two branches followed by a Bitshift operation (division by 2).
This MUX gate receives control signal S as a parameter-free
channel attention mechanism driven by a Global Average Pool-
ing (GAP) followed by a binary threshold T'(z) = 1 {;0.5m}-
Here m is set to the maximum of the GAP’s outputs in the full-
precision representation with ReLU activations, and to 1 in the
quantized model which is the maximum possible value of the
quantized QReLU version. This way, the output of the light-
weight depth-wise convolution controls the operation of the
Multiplexer module in a channel-wise manner. Concretely, the
MUX gate takes I for output feature maps if the correspond-
ing channels of the depth-wise convolution are dominated by
small (i.e., zero) values. Otherwise, it provides the straight-
forward output I; of the depth-wise convolution. In this case,
the computation in the GCM branch can be advantageously
deactivated in a dynamic pruning manner, depending on the
position of the channel.

In the case of the reduced block, we set the stride s = 2
for both the GCM and the depth-wise convolution. As con-
ventional model architectures usually double the number of
channels when performing spatial downsampling, we concate-
nate the output of the GCM and the depth-wise convolution.
Finally, to further favor information sharing across the chan-
nel dimension, a Channel Shuffle is added at the end of both
normal and reduced blocks.

3.3 Network architecture

The overall architecture of MDGNet is depicted in Table[I]
We first project the feature maps from the RGB input space
into f-dimensional space using a standard convolution fol-
lowed by a GCM with stride s = 2. Next, at each spatial level,
the MDGNet repeats the normal blocks 2 times before down-
sampling with a reduced block. There are four spatial levels in
total, hence reducing the spatial dimension 32x. We gradually
double the group parameter g for the last two levels, as these
stages involve a larger number of parameters and operations.
Finally, we make use of a classifier including a point-wise
convolution (with C output feature maps equal to the number
of classes) followed by a full-scale depthwise convolution with
a kernel size equal to the input tensor spatial dimension. This
is introduced in order to extract a single value for each feature
map, while preserving spatial information in a channel-wise
manner. Systematically, MDGNet is configured through two
parameters: a number of feature maps f, and the number of
groups g, hence we denote each setting as MDGNet (f, g).

4 Experiments

We evaluate and compare the performance of MDGNet with
state-of-the-art methods on two different benchmarks: (1)
image classification on STL-10 dataset 2] of 96 x 96 RGB im-
ages, and (2) facial attributes prediction on CelebA dataset [[10]
with 218 x 178 aligned RGB images. For the quantization-
aware training strategy, we adopt the same 3-stage training
strategy as in [[11[]: first train the full-precision MDGNet from
scratch, then fine-tune the weight-ternarized model using BTQ
method, and finally fine-tune the fully-quantized model with
QReLU activation (4-bit for STL-10 and 3-bit for CelebA).
We measure the model’s hardware efficiency in terms of the
weight-related memory (i.e., model size) and the computa-
tional complexity using an estimation of the number of Binary-
equivalent Operations (BOPs [15])). For the sake of scientific
rigor, the BatchNormalization layers (still present in the W-ter
configurations) are taken into account for the BOPs estimation
considering 32b gain/offset parameters with 16b inputs. In ad-
dition, convolution factorizations (e.g., sequential stacking of
PW and Conv in GCM) are also considered with intermediate
16b integer activations.

4.1 Image classification on STL-10

Setting: The target input size is 96 x 96 with C = 10
classes for the network’s output. We apply a simple data
augmentation scheme for training: random crop from all-sided
12-pixel padded images combined with random horizontal
flip. The model is trained with a batch size of 50 during 300
epochs per stage, with a learning rate initialized at 10~3 and
exponentially decayed after 150 epochs with a rate of 0.95.

Results: Table 2] shows the comparison between MDGNet
and two state-of-the-art efficient models: MobileNetV2 [12]

and EfficientNet [14], both trained under the same condi-
tion with the full-precision MDGNet that we discussed above.
Generally, the MDGNet delivers much better performance al-
though requiring smaller model size compared to existing
efficient models. For instance, when compared to the clos-
est peer EfficientNet-BO0, our full-precision MDGNet (64, 2)
achieves 0.37% higher accuracy at only 18% model size but
nearly 175% BOPs. This efficiency is even strongly boosted
when ternarizing the weights (denoted as W-ter), showing
that the ternarization helps improving model’s generability in
datasets like STL-10. Indeed, when ternarizing the weights,
we significantly increase the accuracy in both configurations
(i.e., > +3%). However, a strong degradation of more than
3% when quantizing the activation to 4-bit shows that high-
precision activations play a key role in guaranteeing the repre-
sentation power of efficient architecture like MDGNet.

Table 2 — Comparison with the state-of-the-art efficient net-
works on STL-10 dataset.

Params | BOPs | Accuracy
Vodel MB) | (0% | (%)
MobileNetV2 0.5x 2.8 18.12 72.21
MobileNetV2 0.75x 5.48 39.22 73.98
EfficientNet-BO 16.08 73.01 74.83
MDGNet (32,1) (Ours)
Full-precision 1.15 54.7 71.61
W-ter/A-32b 0.07 4.23 77.18
W-ter/A-4b 0.07 1.43 72.22
MDGNet (64,2) (Ours)
Full-precision 2.88 128.73 75.20
W-ter/A-32b 0.18 9.66 79.28
W-ter/A-4b 0.18 3.00 75.04
MDGNet (64,1) (Ours)
Full-precision 4.45 206.87 76.38
W-ter/A-32b 0.28 14.55 79.62
W-ter/A-4b 0.28 4.53 76.14

4.2 Facial attributes prediction on CelebA

Setting: The target input size is 196 x 160 and the output
has C = 40 attributes. To match the target resolution, we
randomly crop training images during the learning process
while centrally crop the validation and test images at inference
time. The model is trained with a batch size of 128 during 60
epochs per stage, with a learning rate initialized at 2 x 1073,
103 and 10~* for each stage respectively, and exponentially
decayed after 30 epochs with a rate of 0.9.

Results: We compare our model with the existing work
Slim-CNN [13]], and two models MobileNetV2 0.5x, Mo-
bileNetV2 0.75x which are also trained under the same con-
dition with the full-precision MDGNet. The average accuracy
versus model efficiency trade-offs are reported in Table [3] We
can see clearly that the full-precision MDGNet (32,1) provides
higher average accuracy while requiring smaller model size
(i.e., ~ 50%) compared to Slim-CNN and MobileNetV2 0.5 x
networks. However, our model requires a higher budget of
computation. Besides, when ternarizing the weights, we ob-
serve a degradation of 1.56% to obtain a very small-sized
model of under 0.08MB while decreasing the BOPs by nearly
13x. Finally, when using 3-b QReLU activations, we obtain

e SliM-CNN =———MobileNetV2 0.75x =———=MDGNet FP =———=MDGNet W-ter/A-32b ———MDGNet W-ter/d-b

I U
2 9x10'
$ 8x 10"
Qﬁ 1
7x10
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
Attribute Index
10
2 9x10'
$ 8x 10
‘ﬂ 1
7x10' 1
2 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Attribute Index

Figure 2 — The accuracy (%) of 40 binary attributes prediction on CelebA dataset by different efficient networks.

87.66% average accuracy with a loss of 2.11% while reduc-
ing furthermore the BOPs by 3 x. These results suggest that
MDGNet is more relevant to target memory-constrained sys-
tems. Figure [2] depicts the prediction accuracy of different
models over 40 attributes of the CelebA dataset.

Table 3 — Average accuracy of efficient networks on CelebA
attributes prediction benchmark.

Params | BOPs | Average.

Model (MB) | (10%) | Ace. (%)
Slim-CNN 2.28 N/A 91.24
MobileNetV2 0.5x 2.82 66.70 91.09
MobileNetV2 0.75x 5.37 141.31 91.15

MDGNet (32,1) (Ours)

Full-precision 1.22 186.62 91.33
W-ternary/A-32b 0.077 14.42 89.77
W-ternary/A-3b 0.077 4.85 87.66

5 Conclusion and Perspectives

This work presents a novel efficient CNN architecture called
MDGNet, which tends to better encode the spatial informa-
tion in image by favoring learning representations from two
receptive fields (3 x 3 and 5 x 5) by macro block, with differ-
ent levels of channel-wise complexity. This is made possible
thanks to 2-branch building blocks, involving depth-wise and
group convolutions combined via a MUX gate. Moreover,
for the sake of hardware-friendliness, MDGNet also enables a
dynamic pruning mechanism at inference time, while being
compatible to quantization techniques. Note that this paper
does not report any estimation of the concrete dynamic power
consumption reduction that can be efficiently obtained using
such model. We yet empirically shows that our network can
be used for various tasks, demonstrating better performances
while requiring a notably lower model size compared to exist-
ing efficient networks. Future works may focus on increasing
the number of cascaded group convolution in the GCM, or
channel-grouping the MUX gate to further exploit the benefits
of dynamic pruning (via on-line selective hardware execution).

References

[1] Zhourong Chen and Yang et al. Li. You look twice: Gaternet
for dynamic filter selection in cnns. In CVPR, 2019.

[2] Adam Coates and A. Ng et al. An analysis of single-layer

networks in unsupervised feature learning. In AISTATS, 2011.

[3] Steven K. Esser and Jeffrey L. McKinstry et al. Learned step

size quantization. In /CLR, 2020.

Andrew G. Howard et al. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

Kaiming He and Xiangyu et al. Zhang. Deep residual learning
for image recognition. In CVPR, 2016.

(4]

(5]
[6] Yang He and Guoliang Kang et al. Soft filter pruning for accel-
erating deep convolutional neural networks. In IJCAL, 2018.
[7] Itay Hubara and Matthieu Courbariaux et al. Quantized neural
networks: Training neural networks with low precision weights
and activations. ArXiv, abs/1609.07061, 2017.

Hao Li and Asim Kadav et al. Pruning filters for efficient
convnets. In ICLR, 2017.

Yunsheng et al. Li. Micronet: Improving image recognition
with extremely low flops. In ICCV, 2021.

Ziwei Liu and Ping et al. Luo. Deep learning face attributes in
the wild. In ICCV, December 2015.

Van Thien Nguyen, William Guicquero, and Gilles Sicard.
MOGNET: A Mux-residual quantized Network leveraging
Online-Generated weights. In AICAS, 2022.

Mark Sandler and Andrew et al. Howard. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018.

Ankit Kumar Sharma and Hassan Foroosh. Slim-cnn: A light-
weight cnn for face attribute prediction. In 2020 15th IEEE In-
ternational Conference on Automatic Face and Gesture Recog-
nition (FG 2020), 2020.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In /CML, 2019.

(8]
(9]
[10]

[11]

[12]

[13]

[14]
[15] Ying Wang and Yadong Lu et al. Differentiable joint pruning
and quantization for hardware efficiency. In ECCV, 2020.

[16] Xiangyu et al. Zhang. Shufflenet: An extremely efficient convo-
lutional neural network for mobile devices. In CVPR, 2018.
[17] Xiandong Zhao and Ying Wang et al. Linear symmetric quanti-
zation of neural networks for low-precision integer hardware.

In ICLR, 2020.

	Introduction
	Related works
	MDGNet
	Group Convolution module (GCM)
	MDGNet building blocks
	Network architecture

	Experiments
	Image classification on STL-10
	Facial attributes prediction on CelebA

	Conclusion and Perspectives

