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Résumé – Cette contribution montre comment un pré-traitement des images peut améliorer la reconstruction 3D du côlon avec de l’apprentis-
sage profond. L’hypothèse est que, comparé à une correction globale de l’illumination, il est plus efficace de corriger les sous- ou sur-expositions
locales dans les images. Un aperçu sur la chaı̂ne de traitement qui inclut une correction locale des expositions est d’abord donnée. Ensuite, ce
papier quantifie la précision de la reconstruction de la trajectoire de l’endoscope avec et sans correction appropriée des images du côlon.

Abstract – This contribution shows how an appropriate image pre-processing can improve a deep-learning based 3D reconstruction of
colon parts. The assumption is that, rather than global image illumination corrections, local under- and over-exposures should be corrected
in colonoscopy. An overview of the pipeline including the image exposure correction and a RNN-SLAM is first given. Then, this paper quanti-
fies the reconstruction accuracy of the endoscope trajectory in the colon with and without appropriate illumination correction.

1 Introduction
Colonoscopy is the reference procedure for the visualization

of the inner wall of the large intestine (rectum and colon). It is
the only imaging technique that provides natural color and tex-
ture tissue information of hollow organs as the colon, stomach
and esophagus. Video-sequences are visualized on a screen and
analyzed by gastro-enterologists seeking to detect polyps, in-
flammations, bleeding or cancerous lesions.

However, colonoscopy is a complex examination since the
endoscope’s trajectory and viewpoint (distance and orientation
with respect to the inner tissue) are difficult to control. Besides
non-optimal or inappropriate viewpoints for the observation of
lesions do not always facilitate the diagnosis, it is difficult to
make the camera follow trajectories that ensure a full scan of
the tissue with potential lesions. Thus, internal tissue regions
can be missed during the visualization, either due to the diffi-
cult colonoscope guiding or due to hidden epithelium parts or
imaging artifacts such as under or over-exposed frames.

Moreover, it is difficult to retrieve (i.e., to relocate) a lesion
in a given place of a colon segment, either during the exami-
nation itself or between two colonoscopies performed in some
month intervals. For these reasons, computer vision (CV) me-
thods have been proposed to : i) facilitate lesion (polyp) recog-
nition using supervised classification algorithms, ii) 3D colon
part reconstruction to visualize gaps in the internal tissue sur-
faces, and iii) image retrieval algorithms for the determination
of the endoscope localization in the organ.

Recently, deep learning (DL) methods have boosted the speed
and robustness of the CV approaches in the field of hollow or-
gan endoscopy, notably for the segmentation and recognition
of surgical tools [1], for the recognition of polyps [2], or for
the 3D reconstruction of colon parts using simultaneous locali-
zation and mapping (SLAM, [3]) approaches.

However, to obtain robust and accurate methods, proper illu-
mination conditions must be ensured and therefore, exposure
enhancement pre-processing algorithms in colonoscopy are not
only essential for visualization purposes, but are also a prere-
quisite for the efficiency of the previously mentioned 3D re-
construction algorithms [4].

One major consequence of uncontrolled colonoscope view-
points lies in the appearance of multiple artifacts such as under-
or over-exposed frames. These frames with insufficient contrast
often affect the efficacy of 3D reconstruction methods, as repor-
ted in the literature. This contribution details a method for cor-
recting non-optimal exposures and shows how it improves the
camera pose and trajectory estimation yielded by RNN-SLAM
(a real-time 3D-reconstruction method) leading to improved es-
timations colon surface parts.

The paper is organized as follows. Section 2 gives the moti-
vation of the proposed approach, whereas Section 3 discusses
the challenges of the 3D reconstruction of endoscopic data.
Section 4 presents the used dataset, as well as the training and
exposure correction implementation details. Finally, Section 5
provides colon reconstruction results using the corrected images.



FIGURE 1 – Exposures changes in consecutive video-frames.
On the left : an image with an appropriate exposure. In the next
images the contrast decreases (under-exposition).

2 Motivation
The 3D reconstruction of extended hollow organ field of

views is an emerging topic based on various CV techniques
such as SLAM [3], optical flow [5] and/or structure from mo-
tion (SfM, [6]). The current trend in colonoscopy has been the
integration of DL-based end-to-end reconstruction pipelines. In
[3], the 3D reconstruction relies on a hybrid scheme combining
neural networks and a CV pipeline in which the depth and ca-
mera pose are learned using colon data reconstructed with an
SfM algorithm. The prediction is used to feed a SLAM-based
3D reconstruction pipeline.

Many other DL-based reconstruction solutions are inspired
by methods initially conceived for autonomous driving. These
methods combine Convolutional Neural Networks (CNN) and
traditional SLAM approaches for the 3D reconstruction. For
instance, CNN-SLAM incorporates CNN-predicted depth maps
into the LSD-SLAM framework. Depth maps and pose estima-
tion act as a first step leading to a denser and more accurate
uncertainty estimation. Luo et al. [7] also replaced the stereo
measurements in their Stereo Direct Sparse Odometry (DSO)
SLAM with depth values predicted by a CNN. The effective-
ness of using a CNN comes from a robust depth prior and gives
reasonable depth prediction to assist a SLAM system.

However, for extreme acquisition conditions as in endoscopy,
the methods described previously face specific challenges. In
colonoscopy or gastroscopy, the scene illumination strongly
depends on the endoscope’s orientation with respect to the tis-
sue surface, as shown on Fig. 1. Parts of the colon are often
under- or over-exposed depending on the surface shape or af-
fected by specular reflections. Nevertheless, numerous SLAM
reconstruction techniques are more or less based on the as-
sumption that the brightness between consecutive images re-
mains almost constant or changes slightly and constantly over
the image. This hypothesis ( brightness constancy assumption)
is valid to some extent for some applications [8], but does not
hold in endoscopy where image enhancement is a mandatory
step for a robust and clinically usable 3D reconstruction [3].

3 State-of-the-art
Endoscopic images are challenging for monocular depth es-

timation, due to the low-textured surfaces and complex scene
illumination. The authors in [3] employed an SfM approach to
generate sparse depth information using real colonoscopic data
and trained in a supervised manner a depth estimation network
in real-time solely with these clinical data. Then, they used a

a SLAM approach which predicts the camera poses using the
colonoscopic images and reconstruct in real-time colon surface
parts. This work represents the first successful attempt to re-
construct human colon parts. GAN frameworks and reflection
models were used in [9] to transfer knowledge learned from
synthetic data to real data. This approach enables the visuali-
zation of missing tissue regions. However, no image exposure
correction step was applied.

Despite the promising results in [3, 9], depth estimation net-
works can only handle simple photometric changes and may
lead to strong depth errors. For complex illumination condi-
tions, the predicted shapes often fail to produce precise surfaces
or the colon diameter deviates from its true value.

Zhang et al. [10] proposed a global image enhancement tech-
nique to improve the 3D reconstruction. In their RNN-SLAM
pipeline, an RNN was trained to predict the best gamma va-
lue (which models a global intensity change between images)
using previous and current frames. The images were enhan-
ced using a histogram equalization and modified by an adaptive
gamma correction method.

This previous work has effectively improved the 3D recons-
truction of colon parts by exploiting a global exposure correc-
tion between images. Nevertheless, using a RNN to only pre-
dict the best gamma value for each frame does not allow to
correct local under- or over-exposures, and can even produce
an over-smoothing of the images. The resulting images can be
poorly contrasted (i.e., faded) images.

The authors in [4] proposed a DL-based image correction
called Endo-LMSPEC (Learning Multi-Scale Photo Exposure
Correction) which takes into account strong local exposure chan-
ges. This method is able to cope both with under- and over-
exposed images in a more local way compared to previous me-
thods [3, 10]. The aim of this paper is to integrate this method
into the colon RNN-SLAM reconstruction pipeline.

4 Materials and Methods

4.1 Full pipeline
The 3D colon reconstruction pipeline which exploits the lo-

cal image enhancement pre-processing step is given in Fig. 2.
This pipeline is adapted from RNN-SLAM [3] which includes
tracking, key-frame selection, local windowed optimization, and
marginalization modules. The authors associated a RNN with
the tracking module and added a fusion module at the pipeline
end. This contribution proposes a strategy to combine RNN-
SLAM with a deep learning-based exposure enhancement me-
thod, namely Endo-LMSPEC.

4.2 Dataset
The RNN was trained using depth maps produced by an SfM

technique to deal with the lack of ground truth (depth maps and
camera poses). To do so, the SfM method was used to recons-
truct colon parts seen in 60 real colonoscopy video sequences,



FIGURE 2 – Proposed pipeline including Endo-LSMPEC image enhancement and RNN-SLAM modules.

each containing about 20 thousand frames. Using 200 consecu-
tive frame windows, the SfM technique calculates the corres-
ponding depth maps and camera poses, which are then used for
the training (for full details, see the original paper [3]).

4.3 Deep learning-based image enhancement
Rapid and local illumination changes impede reliable point

matching and depth predictions which are vital steps to obtain
a precise 3D reconstruction. This work uses the deep learning-
based image enhancement method called Endo-LMSPEC mo-
del which was fed by n small patches I ′1, ..., I

′
n randomly ex-

tracted from the images. Each image patch is used to deter-
mine two image pyramids : i) a four-level Gaussian Pyramid
(GP) and ii) a four-level Laplacian Pyramid (LP). A LP can be
seen as a set of frames with different frequency levels, LP =
{l1, l2, l3, l4}, where l1 and l4 contain the high- and low-fre-
quency components, respectively. This LP decomposition is
performed to feed four U-Net-like sub-nets in a cascaded confi-
guration with image patches with different levels of detail. Each
sub-net is used to extract relevant features from the image and
to carry out a reconstruction of each li input in reverse order ;
more details can be found in [4]. The model trained for the
image enhancement is fed with corrupted images and the out-
put is the images with exposure enhancement. Our testing set
is composed of 4 real colonoscopy videos which consist of 689
exposure-corrected frames with Endo-LMSPEC model to be
reconstructed in the next SLAM steps.

4.4 Depth & pose network training
Figure 2 illustrates how RNN-SLAM utilizes forecasts of the

depth and camera position as an initial step for further calcu-
lations. The RNN network consists of two parts : a depth es-
timation network and a camera pose estimation network. The
depth estimation network produces a depth map of the same
size as the input image, while the camera pose estimation net-
work generates a relative 6-DoF (degree of freedom) camera
pose between the current and prior frames. If the camera intrin-
sic parameters are known, the dense flow field for 2D pixels can
be calculated from the current view to the prior view by utili-
zing the estimated depth map, camera pose, and camera intrin-
sic parameters. The estimated depth maps and camera poses are
then used to generate dense flow fields to warp previous views
to the current view through a differentiable geometric module.

The training phase was re-implemented on Tensorflow 2.11,
using the training set described in section 4.2, in a fully super-
vised manner over 20 epochs, using a 0.0002 learning rate and
Adam as optimizer. The model was fed with 10 frames which
are grouped in a sliding window fashion, in order to preserve
the temporal information between frames (more details in [8]).

5 Trajectory accuracy and Metrics
An open-source tool named EVO [11] was used to quantify

the accuracy of the camera trajectory recovery which acts as
a quality criterion of the 3D surface reconstruction. To assess
the performance of the local exposure correction, a compari-
son between the reconstructed endoscope camera trajectories
(with image enhancement) and the trajectories obtained with
the original RNN-SLAM pipeline (without any enhancement)
to ground-truth trajectories must be performed. The latter were
generated in an offline way from our testing set of four real
colonoscopies. To do so, we used Colmap, a state-of-the-art
SfM reconstruction method that incorporates pairwise exhaus-
tive image matching and global bundle adjustment. Colmap is
very slow, but it reconstructs trajectories very accurately. For
this reason, the ”Colmap trajectories” can be seen as a “ground
truth” for the trajectory accuracy evaluation.

Two popular metrics were used to compare RNN-SLAM with
and without exposure correction, namely the absolute pose er-
ror (APE) and the root mean square error (RMSE). The accu-
racy of the trajectories provided by the SLAM-methods can be
assessed by comparison with the ground truth trajectories. An
APEi value is defined by the Ei values determined with two
matrices corresponding to the ith ground truth camera pose P gt

i

and to the ith estimated pose P est
i along the camera optical cen-

ter trajectory SE. Pose P gt
0 (i.e., i = 0) defines the coordinate

system in which SE is determined and trans(Ei) refers to the
translational components of the relative pose error.

Ei = (P gt
i )−1P est

i ∈ SE (1)

APEi = ||trans(Ei)||2 (2)

RMSE =

√√√√ 1

N

N∑
i=1

APE2
i (3)



FIGURE 3 – Visual trajectories between the ground truth and
the results obtained by RNN-SLAM with and without local ex-
posure corrections.

TABLE 1 – Quality metrics. The APE and RMSE values are
determined by using simultaneously all APi values of the four
videos, while the mean, std, median values are computed
with the meanj and medianj of the APi values of the four
video-sequences (j ∈ [1, 4]). The best values are in bold.

RNN-SLAM APE RMSE std median mean

Without exposure correction 1.28 0.96 0.13 0.82 0.85
With gamma correction [10] 1.04 0.86 0.32 0.74 0.80

LMSPEC image enhancement[12] 0.97 0.66 0.28 0.68 0.85

Table 1 shows the metric values allowing the assessment
of the three approaches, namely RNN-SLAM without image
enhancement, RNN-SLAM with gamma correction [10] and
RNN-SLAM with LMSPEC (this contribution). The metric va-
lues (the lower the better) reflect the proximity of the RNN-
SLAM trajectories with their ground truth counterparts (Col-
map-trajectories). It is noticeable that the proposed SLAM me-
thod outperforms both RNN-SLAM without enhancement and
with gamma correction since the lowest metric values (in bold)
are globally in favor of the local exposure correction. Figure 3
visualizes the trajectories for one colonoscopic video. It can be
observed that the proposed SLAM with image correction yield
trajectories (blue lines) closer to that of the ground truth.

6 Conclusion and future work
This work shows that an appropriate image pre-processing

method enables RNN-SLAM based methods to reconstruct more
accurately camera trajectories for 3D colonoscopy. Enhancing
under- and over-exposed frames more locally (in contrast to
global gamma correction) has a positive impact on the accuracy
of the trajectory. In future work, an outlier rejection approach
will be incorporated in the 3D point cloud generation to im-
prove the meshing and to obtain textured colon parts and depth
prediction metrics.
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