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Résumé – La surveillance de l’état des chaînes cinématiques des éoliennes est une tâche difficile en raison de la présence de
nombreux sous-composants rotatifs dans leurs boîtes d’engrenages. Ces sous-composants génèrent de nombreuses excitations
harmoniques, qui créent des signaux de vibration dominants pouvant masquer les signatures de défauts potentiels des engrenages
et des roulements. En outre, les éoliennes fonctionnent dans des environnements non stationnaires, ce qui entraîne des vibrations
différentes en fonction du régime opérationnel. Pour faire face à cette complexité, une approche hybride combinant le traitement du
signal et les méthodes basées sur les données est utilisée. Le traitement du signal est utilisé dans un premier temps pour simplifier
les données sur la base de connaissances physiques, tandis que les méthodes basées sur les données sont utilisées pour analyser les
données de manière plus approfondie. Cet article présente les détails d’une telle approche de surveillance hybride appliquée aux
données expérimentales d’une éolienne.

Abstract – The task of condition monitoring for wind turbine drivetrains is difficult due to the presence of numerous rotating
subcomponents in their gearboxes. These subcomponents generate many harmonic excitations, which create dominant vibration
signals that can obscure the signatures of potential gear and bearing faults. Furthermore, wind turbines operate in non-stationary
environments, leading to different vibrations depending on the operational regime. To address this complexity, a hybrid approach
that combines signal processing and data-driven methods is used. Signal processing is used initially to simplify the data based on
physical insights, while data-driven methods are used to further analyze the data. This paper presents the details of such a hybrid
monitoring approach applied to experimental wind turbine data.

1 Introduction
Over the past decade, wind energy capacity in Europe has

experienced consistent growth, with an additional 3 GW of
offshore capacity installed in 2020, bringing the total to 25
GW [1]. The growth rate of wind energy has increased in
recent years, thanks in part to significant reductions in the
levelized cost of energy (LCOE) for both onshore and off-
shore wind, which have made them more competitive with
traditional energy sources [1]. Wind turbine manufacturers
are now focusing on optimizing designs to reduce operational
costs, with a particular emphasis on identifying the machine
components that contribute most to downtime [2]. Of these,
gearboxes have the longest downtime per failure, making them
the key area of investigation in this paper. Figure 1 shows the
relative failure rates of different gearbox components, with
bearings being the most susceptible to failure, followed by
gears, and HSS bearings having the highest failure rate. To
reduce operational costs, it is crucial to anticipate these failures
in advance to allow for preventive maintenance. At the same
time, it is necessary to identify the root causes of failures to
prevent them from happening in future designs.

Detecting problems quickly and accurately through condi-
tion monitoring is a crucial component of a typical predictive
maintenance strategy. This is because optimizing spare parts
and repair equipment logistics, such as crane vessels for wind
turbines, is essential to avoid extended downtime. Early de-

Figure 1 – Relative failure rate of the different drivetrain com-
ponents [3].

tection of faults is necessary for timely alarming, but merely
providing a general diagnostic alarm is insufficient. Advanced
signal processing techniques are utilized to predict failures
using vibration data. By doing so, it is possible to conduct
predictive maintenance instead of reactive or periodic main-
tenance. When monitoring the components of rotating ma-
chinery, vibration analysis is the most widely used approach.
This is mainly because it not only enables analysis of high-
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frequency events typically associated with gears and bearings,
but it is also relatively easy to install, has a proven track record
of effectiveness, and usually allows for diagnosis of the fault
type and location to some degree.

The process of analyzing vibrations to gather informa-
tion about the condition of a turbine is a complex issue that
has been approached by researchers and industry in various
ways. Current practice in industrial condition monitoring sys-
tems typically involves tracking time-domain statistical indi-
cators and more component-specific frequency-domain indi-
cators [4, 5, 6]. Using simple scalar time-domain indicators
has the advantage of not requiring any a-priori knowledge
about the characteristic fault frequencies, which simplifies the
analysis procedure considerably. However, this approach does
not enable the identification of the specific component exhibit-
ing anomalous behavior. While not having knowledge about
the exact location of a fault is a drawback, it is often more
straightforward and efficient to obtain a broad overview of
which measurement sensor is detecting faulty behavior dur-
ing an early analysis stage, without the immediate need for
information about the exact component and location of failure.
Later on, a more detailed frequency-based analysis can be
performed to determine the missing failure information. Most
monitoring frameworks typically do not process vibration data
using more advanced analysis techniques beyond tracking sta-
tistical indicators and spectral amplitudes. To address this
lack of advanced and in-depth analysis, this study proposes a
multi-step processing approach that starts with raw vibration
data and results in automated alarm indicators.

2 Methodology
A combination of vibration-based condition monitoring and

SCADA data is typically used to identify mechanical dete-
rioration of drivetrain components in wind turbines. This
study proposes an extensive and thorough vibration analysis
method that tracks the health of the drivetrain bearings and
gears, while also taking advantage of detailed SCADA data
and information on the working regime. The approach involves
multiple processing pipelines that explore various properties
of the vibration data, such as statistical, spectral, and cyclo-
stationary properties, and employ pre-processing techniques
like blind filtering, deconvolution, and discrete-random separa-
tion [2, 7, 8]. An overview of the different steps in the hybrid
SCADA-vibration analysis pipeline is provided in Figure 2.
The next sections describe the various processing categories
involved in this pipeline.

2.1 Data quality assessment
Before proceeding with automated industrial monitoring

based on vibrations, it is essential to determine if a new mea-
surement is suitable for analysis. The ideal scenario is to
have quasi-stationary measurements with respect to operating
parameters like instantaneous rotating speed and load. Mea-
surements during transient events, such as run-downs or con-
trol actions like curtailment, should ideally be excluded as
they can complicate both the analysis and the interpretation
of results [9]. To ensure a guaranteed level of data quality, an
automated quality analysis is performed on both the SCADA
and vibration data. The analysis examines the transient and

Figure 2 – Overview of hybrid SCADA-vibration monitoring
pipeline for fleet-wide analytics on wind turbine drivetrain.

control events in the former data source and verifies the pres-
ence of anticipated mechanical component signatures in the
time and frequency domain in the latter.

2.2 Speed estimation
After verifying the quality of the data, the next step typi-

cally involves obtaining an accurate estimate of the instanta-
neous rotating speed. If there is access to an angle encoder
or tachometer, the speed can be directly deduced from the
measured pulse signal. However, if such a high-resolution
pulse signal is unavailable, the SCADA data may serve as an
alternative source, provided that a rough speed parameter is
available for one of the gear stages in the drivetrain or the
generator. In this case, a vibration-based speed estimation al-
gorithm, such as the Multi-Order Probabilistic Approach [7] or
the Multi-Harmonic Demodulation [10], can refine the rough
speed estimate. The former uses a time-frequency distribution
of the vibration signal as a probability density map of the in-
stantaneous angular speed, while the latter employs the phase
of multiple harmonics. If the SCADA data does not contain a
rough speed parameter, a preliminary rough speed estimation
can be performed on the vibration data using a set of parame-
ters that allow for wide-range speed estimation. An example
of vibration-based speed estimates of the high-speed shaft is
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shown in Fig. 3, which originates from a diagnosis contest
held at the International Conference on Condition Monitoring
of Machinery in Non-Stationary Operations in 2014. After es-
timating the rotating speed, the vibration data is order tracked
to result in stationary signals in the angle domain.

Figure 3 – Example of instantaneous angular speed estimates
of the high-speed shaft obtained by 8 different vibration-based
methods on vibration data of a wind turbine gearbox housing.

2.3 Vibration pre-processing
Further pre-processing is required for the resulting angular

domain vibrations to ensure proper tracking of the drivetrain
condition. Typically, a monitoring scheme aims to track both
periodic events (such as gear vibrations) and random events
(such as bearing impulses) simultaneously [11], which require
different approaches for vibration analysis. Standard spectral
analysis techniques are generally suitable for monitoring peri-
odic events, while achieving satisfactory early detection time
for random events usually requires proper data cleaning. How-
ever, the distinction between periodic and random events is not
always straightforward in modern wind turbine drivetrains, as
most gearboxes contain at least one planetary gearset, resulting
in intermittent periodic vibrations and a complex transfer path
due to the rotary motion of the planet gears and planet carrier.
To effectively monitor such a gearset, special care must be
taken to deal with the rotary motion of the planet gears. Ad-
vanced deterministic-stochastic signal separation techniques
can be used to achieve the necessary data cleaning for stochas-
tic event monitoring [12]. Figure 4 shows an example of a wind
turbine gearbox vibration spectrum before and after this sepa-
ration, where the contributions of different components in the
measured vibration signal are separated to simplify the analy-
sis. Besides the many different vibration source characteristics,
many mechanical faults are also narrow-band phenomena and
thus benefit from adaptive frequency-based techniques that
increase the signal-to-noise ratio of the potential fault [13] .

2.4 Condition indicators
After cleaning and stabilizing the vibration data, signal pro-

cessing techniques can be applied to derive various condition
indicators. These indicators typically involve computing sev-
eral statistics in the time domain, spectral amplitudes, and
modulation features. As a result of processing the vibration

Figure 4 – Example of the residual amplitude spectra of
a wind turbine gearbox vibration signal after deterministic-
random separation with two different techniques, DRS and
DRS-MD [14]. The reference order used for the x-axis is the
HSS speed.

signals, the number of potential indicators can increase sig-
nificantly, especially when tracking different frequency bands.
Therefore, a rigorous pre-processing phase and a detailed indi-
cator computation step can generate a vast set of indicators [9].
However, manually examining such a large set of indicators is
impractical, and these indicators are specific to the operating
conditions and do not consider any operational information
except for speed compensation.

2.5 Machine learning
The last stage of data processing involves normalizing the

condition indicators relative to the turbine’s operating condi-
tions at the time of measurement and reducing the extensive set
of indicators. Ideally, each indicator should be independent of
the turbine’s operating regime for a one-to-one comparison. To
achieve this normalization, a normal behavior model is trained
on a subset of healthy data [15, 16]. First, k-means clustering
is performed on the operational data to make the indicators in-
dependent of the operating conditions. Then, the data is binned
per operating regime, and linear Bayesian Ridge Regression is
used to map the operational parameters to a specific indicator.
Properly quantifying all types of uncertainty is necessary for
the anomaly detection mechanism to analyze deviations from
a healthy linear trend in terms of the model’s noise [17]. A typ-
ical example of an operating condition-independent anomaly
trend is depicted in Fig. 5. Low-level normalized indicators are
used for anomaly aggregation, leading to high-level anomaly
scores for different turbine sensors, allowing for a quick as-
sessment of the drivetrain’s health.

2.6 Conclusions
This paper proposes an integrated framework for gaining

insights into drivetrain health. Initially, SCADA data is auto-
matically annotated to obtain wind turbine loading conditions
automatically. The annotation framework also ensures that
vibration measurements acquired during transient conditions
are not processed. Advanced signal processing pipelines ana-
lyze the approved datasets, removing speed fluctuations and
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Figure 5 – Example of a typical turbine workflow where in-
dividual indicator anomaly trends are aggregated into higher-
level alarm indicator trends on the sensor level.

cleaning up vibration signals to compute operating regime-
independent condition indicators. Finally, these indicators
are utilized for automatic anomaly detection with the aid of
a normal behavior model that facilitates automatic alarming.
This approach provides continuous, in-depth insights into the
drivetrain condition of the turbine fleet.
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