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Résumé – On s’intéresse à la quantification des facteurs dans un produit de matrices creuses à structure papillon. On montre que
les propriétés particulières es supports des facteurs papillon permettent d’aborder le problème comme une séquence de problème de
quantification de rang un. On propose un algorithme optimal de quantification de rang un utilisant les invariances du problème par
remise à l’échelle. Cet algorithme sert de brique de base dans une approche heuristique pour la quantification de produits papillon, qui
s’avère bien plus précis qu’une approche naive basée sur la quantification de chaque facteur au plus proche voisin indépendamment.

Abstract – We consider the problem of quantizing the factors of butterfly factorizations. We show how the properties of butterfly
supports can be exploited to reduce the problem to the solution of a series of rank-one quantization problems. We thus propose an
algorithm that, exploiting the intrinsic scaling invariance of the problem, gives the optimal solution of the rank-one quantization problem.
We employ this algorithm as a building block in a heuristic procedure to solve the quantization problem of butterfly factors, which we
show can be much more accurate that the naive round-to-nearest startegy of quantizing each factor independently.

1 Introduction
Approximating a large dense matrix as a product of two or

more sparse factors is a fundamental problem in many tasks, such
as in signal processing and machine learning, see e.g., [6, 8, 2].
This amounts to finding, given a matrix Z, J sparse factors
X1, . . . ,XJ such that Z ≈ X1 . . .XJ . This is often referred to
as sparse matrix factorization (SMF). The sparse factors usually
belong to structured family of matrices, so that the sparsity pat-
tern can be easily exploited to reduce the computational cost of
linear operations involving Z. A particularly useful family is that
of butterfly matrices, widely used for their strong expressivity
and extreme sparsity pattern: they only have two nonzeros per
row and per column and appear for instance in the factorizations
of the Hadamard and of the Fourier matrices.

Due to the growing size of matrices in applications, optimizing
the memory usage of SMF algorithms is important. Quantization
methods have been applied in many fields to deal with the always
growing scale of models and datasets, for instance in the training
and inference of large deep neural networks (DNN), see e.g.,
[7] but, to our knowledge, quantization in SMF has never been
addressed before. The interest for this problem, especially when
butterfly factorizations are considered, is further motivated by
the recent works on the approximation of weight matrices in
DNN with sparse structured matrices [2].

Due to the structure of butterfly matrices, certain partial prod-
ucts of their factors can be decomposed into blocks that admit
an exact representation as rank-one matrices. This property has
been used in the literature [5] to design algorithms able to ap-
proximate a given matrix Z with a butterfly product. In this
paper we also exploit this property to quantize butterfly factors
X1 . . .XJ , in order to approximate their product with low error

∥X1 . . .XJ−X̂1 . . . X̂J∥ – here, ∥·∥ is the Frobenius norm. The
key ingredient that our approach relies on is optimal rank-one
quantization: given Ft := {±k2e−t, k ∈ J2t−1, 2t−1K, e ∈ Z}
the set of floating-point numbers with t ≥ 1 bits of significand
and unquantized (or high-precision) vectors x ∈ Rm, y ∈ Rn,
we wish to solve

min
x̂∈Fm

t ,ŷ∈Fn
t

∥xy⊤ − x̂ŷ⊤∥2. (1.1)

We thus first propose in Section 2 an optimal algorithm with
bounded complexity for the solution of (1.1), which exploits the
intrinsic scaling invariances of the problem. We demonstrate
(empirically and with theoretical upper/lower bounds on the
worst case error) in Section 3 that using a reduced number of bits
to quantize x and y can preserve the precision of their product.
This is used in Section 4 to propose an approach to quantize
butterfly factors, and we demonstrate how much savings on
precision can be achieved on each factor when the number of
factors increases. Due to lack of space all formal proofs are
omitted. They can be found in [3].

2 Optimal rank-one quantization
We consider rank-one quantization: given x ∈ Rm, y ∈ Rn

where m,n ≥ 1, we seek quantized x̂ ∈ Fm
t , ŷ ∈ Fn

t that solve

min
x̂∈Fm

t ,ŷ∈Fn
t

Cx,y(x̂, ŷ), with Cx,y(x̂, ŷ) := ∥xy⊤ − x̂ŷ⊤∥2.

(2.1)
A naive approach is to map each element of x and y to their
nearest neighbor in Ft. This yields quantized x̂ and ŷ satisfying

x̂ = round(x) = x+∆x, ∥∆x∥ ≤ vt∥x∥, (2.2a)
ŷ = round(y) = y +∆y, ∥∆y∥ ≤ vt∥y∥, (2.2b)
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where round(·) is the function that maps any a ∈ R to its nearest
neighbor in Ft (we ignore ties for the sake of simplicity), and
is applied elementwise. The quantity vt :=

2−t

1+2−t bounds the
maximum relative distance between any element in the repre-
sentable range and its nearest neighbor in Ft [4]: for every a ∈ R,
we have |round(a) − a| ≤ vt|a|. We will refer to this “naive”
approach as the round-to-nearest (RTN) approach. It is worth
noting that, by definition, x̂ and ŷ are optimal quantizations of
x and y, in the sense that they minimize the errors ∥x− x̂∥ and
∥y − ŷ∥. However, our goal is to minimize instead the overall
quantization error ∥xy⊤ − xy⊤∥, and the RTN approach is far
from optimal, as it does not take into account the intrinsic scal-
ing invariances of the problem. The following result bounds the
worst case quantization error obtained with RTN.

Lemma 2.1. For any x ∈ Rm and y ∈ Rn we have

∥xy⊤ − round(x)round(y)⊤∥ ≤ (2vt + v2t )∥x∥∥y∥. (2.3)

As we will see, optimal quantization can achieve much lower
errors. However, finding an optimal quantization is a harder
problem. For example, for low precision quantization (small
values of t), and by restricting the set Ft to a finite interval such
as [1, 2], Ft ∩ [1, 2] only has a small number of elements and so
one may think of using a brute-force algorithm that enumerates
all possible solutions. However, the challenge is that this brute
force approach requires to test each of these values for each
element of x̂, ŷ, yielding a O(2t(m+n)) complexity which is
exponential in m+n and thus clearly intractable except for very
small problems. One of the main contributions of this work is to
characterize the optimal solution of this problem and to devise a
tractable solution method with complexity O(mn2t).

2.1 Existence and characterization of an optimal
quantization

Our first result is the key technical ingredient to prove that an
optimal quantization exists and to characterize it. It allows us to
reduce the problem to a scalar one: it suffices to find an optimum
λ∗ of a scalar function f(λ), assuming it exists.

Lemma 2.2. Let x ∈ Rm, y ∈ Rn. We have

inf
x̂∈Fm

t ,ŷ∈Fn
t

Cx,y(x̂, ŷ) = inf
λ∈R

f(λ), (2.4)

withf(λ) := max
x̂∈round(λx)

Cx,y

(
x̂, round(µ(x̂)y)

)
(2.5)

where µ(x̂) := x⊤x̂
∥x̂∥2 if x̂ ̸= 0 and 0 otherwise.

Definition (2.5) uses a max on purpose, cf [3] for details.
Moreover, f is invariant by multiplication by 2 and sign flip, [3,
Lemma 4.3]. This allows us to restrict the search for an optimum
to the interval [1, 2). We show that the function f(λ) takes a
finite number of values in [1, 2), therefore proving the existence
of an optimum. Formally, we need to define the breakpoints of
the function λ 7→ round(λx) for a given x. The breakpoints
correspond to the values of λ for which there exists at least one
coordinate i such that round(λxi) corresponds to a tie. For any

x ∈ Rm, the function λ 7→ round(λx) is piecewise constant
with finitely many breakpoints in the open interval (1, 2). We
denote them λj , 1 ≤ j ≤ B in increasing order and establish the
following result.

Theorem 2.3. Consider nonzero x ∈ Rm, y ∈ Rn, with m,n ≥
1, and t ≥ 1. Denote λ0 := 1 < λ1 < . . . < λB < 2 =: λB+1

with λj , 1 ≤ j ≤ B the breakpoints of λ ∈ (1, 2) 7→ round(λx),
and λj+1/2 := (λj+λj+1)/2, 0 ≤ j ≤ B. Problem (2.1) admits
an optimum x̂, ŷ such that

x̂ = round(λ∗x) with λ∗ = λj∗+1/2 for some 0 ≤ j∗ ≤ B,

ŷ ∈ round(µ∗y), with µ∗ =

{
x⊤x̂
∥x̂∥2 , if x̂ ̸= 0

0, otherwise.

This theorem tells us that to find an optimum of problem (2.1)
we just need to find the optimal scaling parameter λ∗. Once λ∗

has been determined, both x̂ and ŷ can easily be found. We thus
have reduced a problem with mn variables to a problem with a
single variable λ, whose feasible values belong to a finite set.

2.2 Optimal quantization algorithm
There remains to develop a tractable algorithm to actually

compute the optimal scalar λ∗ for each instance (x, y). To do so,
we can leverage the characterization above by explicitly enumer-
ating the breakpoints λj , j = 1: B. We outline in Algorithm 1
a method to solve (2.1). The algorithm builds the set of break-
points B(x), sorts it in increasing order, and finally enumerates
it to test each midpoint and find the optimal one.

Algorithm 1: An algorithm to solve (2.1).

Input: x ∈ Rm, y ∈ Rn, t ∈ N∗;
Output: x̂∗ ∈ Fm

t , ŷ∗ ∈ Fn
t solutions to (2.1);

Initialize x̂∗ ← 0, ŷ∗ ← 0;
if x = 0 or y = 0 then

exit;
end
Sort breakpoints in increasing order to obtain λj ,
1 ≤ j ≤ B, λ0 ← 1, λB+1 ← 2;

for j = 1 to B + 1 do
λ← (λj−1 + λj)/2;
x̂← round(λx);
µ← x⊤x̂/∥x̂∥2;
ŷ ← round(µy);
if Cx,y(x̂, ŷ) < Cx,y(x̂

∗, ŷ∗) then
x̂∗ ← x̂, ŷ∗ ← ŷ;

end
end

By Theorem 2.3, this algorithm computes the optimal quanti-
zation. Moreover, we can bound its complexity by showing that
the number of breakpoints #B(x) is bounded by m2t. Building
and sorting B(x) has a space cost in O(m2t) and a time cost
in O(m2t logm). The operations performed at each iteration
of Algorithm 1 have a cost in O(m+ n), including the evalua-
tion of Cx,y(x̂, ŷ), which is efficiently performed by exploiting
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Figure 3.1 – Worst relative error
√
Cx,y(x̂, ŷ)/∥xyT ∥ over 100

random pairs (x, y) ∈ Rn×n and its lower/upper bounds of (3.1).

the fact that xy⊤ − x̂ŷ⊤ is a rank-two matrix. Taking into ac-
count the loop over #B(x) breakpoints, Algorithm 1 has a total
time cost in O((m+ n)#B(x)) = O((m+ n)m2t). Since we
can also reverse the respective roles of x and y by looping on
B(y), a time cost in O((m + n)n2t) can also be achieved, so
choosing the best of both yields O((m + n)min(m,n)2t) =
O(max(m,n)min(m,n)2t) = O(mn2t). Overall we get, tak-
ing into account also the space for storing x̂, ŷ:

Theorem 2.4. Algorithm 1 solves problem (2.1) in O(mn2t)
time and in O(min(m,n)2t +m+ n) space.

3 Rank-one quantization error
We can prove the following bounds on the worst-case optimal

rank-one quantization relative error, denoted ϵ(Σm×n
1 (Ft)):

ϵ(FtFt) ≤ ϵ(Σm×n
1 (Ft)) ≤ 2vt + v2t ≈ 21−t, (3.1)

where ϵ(FtFt) := sup
z∈R\{0}

inf ẑ∈FtFt
|ẑ − z|

|z|
(3.2)

is the worst case relative error of quantizing a scalar on the
set FtFt := {x̂ŷ, x̂ ∈ Ft, ŷ ∈ Ft}. The upper bound in (3.1)
is simply the worst-case bound of the naive RTN approach (cf.
Lemma 2.1). While we do not have an explicit expression for the
lower bound ϵ(FtFt), we can exhibit an algorithm to compute it
given t. We observed that it approximately behaves as 2−1.6t.

We illustrate the theoretical bounds (3.1) in Figure 3.1 which
compares the upper and lower bounds ϵ(FtFt) and 2vt + v2t
with the empirical worst-case quantization errors obtained over
100 randomly generated couples x, y ∈ Rn (with entries drawn
from the uniform [0,1] distribution and multiplied by random
exponents ranging from 10−2 to 102) for different values of n
and t. The empirical worst case error falls somewhere between
its lower and upper bounds. Interestingly, while both bounds do
not depend on n, the empirical worst-case error clearly increases
with n, getting closer and closer to its upper bound.

We also compare the optimal quantization error errOPT :=
∥xy⊤ − x̂ŷ⊤∥/∥xy⊤∥ with the RTN baseline error errRTN :=
∥xy⊤−round(x)round(y)⊤∥/∥xy⊤∥. Figure 3.2 displays scat-
ter plots of both errors for various values of n and t. The plot
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Figure 3.2 – Scatter plot of errOPT , errRTN for 100 randomly
chosen couples (x, y) ∈ Rn×n for different values of n and t.

reveals two trends as n increases: the points become less dis-
persed, and closer to the diagonal (where errOPT = errRTN ,
that is, when no accuracy gain is achieved by the optimal algo-
rithm). These trends seem to hold regardless of t, although the
average accuracy gains seem larger as t increases.

4 Quantizing butterflies
We now consider the application of the optimal rank-one

quantization developed in the previous section to the quantization
of butterfly factorizations. For this, observe first that Algorithm 1
can be adapted to also output optimal scalars λ∗, µ∗ ∈ R (cf.
Theorem 2.3) such that x̂ = round(λ∗x) and ŷ = round(µ∗y)
are optimal solutions to (1.1). Minor adaptations of the algorithm
also yield λ, µ such that x̂ := round(λx) and ŷ := µy are
optimal solutions to a variant of (1.1) where ŷ ∈ Rn is not
constrained to be quantized.

Now, given vectors xi, yi ∈ Rn, 1 ≤ i ≤ r such that the
rank-one matrices xiy

⊤
i have disjoint supports Ti := {(k, ℓ) :

(xi)k ̸= 0 and (yi)ℓ ̸= 0}, and considering X,Y ∈ Rn×r the
matrices with the corresponding columns, it is not difficult to
check that the following optimal quantization problem

X̂, Ŷ ∈ arg min
X̂,Ŷ∈Ft

∥XY⊤ − X̂Ŷ⊤∥2, (4.1)

whereFt is the set of matrices with coefficient in Ft and the same
supports as X,Y, decouples into r independent optimal rank-
one quantization problems. Its solution can thus be computed by
r independent applications of Algorithm 1 and yields diagonal
matrices Λ∗,M∗ ∈ Rr×r such that X̂ = round(XΛ∗) and Ŷ =

round(YM∗) (resp. X̂ = round(XΛ), Ŷ = YM when Ŷ is
not constrained to be quantized). According to Theorem 2.4 this
is achievable with time complexity O(2t

∑r
i=1 ∥xi∥0 × ∥yi∥0).

Finally, a property of butterfly products Z = X1 . . .XJ ∈
Rn×n, J = log2(n), is that every pair of partial products X :=
X1 . . .Xℓ, Y⊤ := Xℓ+1 . . .XJ is such that the r = n rank-one
matrices xiy

⊤
i associated to the columns of X,Y have disjoint

support [5, Lemma 2] and ∥xi∥0 × ∥yi∥0 = n. This leads to the
heuristic outlined in Algorithm 2, which quantizes the factors
one by one in J steps. At step k, the factor Xk is quantized
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using optimal two-factor quantization on X = MXk and Y⊤ =
Xk+1 . . .XJ , where the diagonal scaling M comes from the
quantization of the pair at step k − 1. Thus, the quantization of
each individual factor is optimal but there is no guarantee that
the entire process is globally optimal. Notice that in Algorithm 2,
each time the optimal algorithm is called, it is used to quantize
only one of the factors, while the other is then used in full
precision, except for the last iteration. A variant quantizing
first the rightmost factors is straightforward, and extensions
based on other factor-bracketing trees [9] are left to future work.
Algorithm 2 has time complexity O(J2trn) = O(2tn2 log(n)).

Algorithm 2: J-factor butterfly quantization.

X← X1, Y⊤ ← X2 . . .XJ ;
for k = 1 to J − 2 do

Quantize the two-factor decomposition XY⊤ via
the optimal algorithm to solve (4.1) with no
quantization constraint on Ŷ, yielding
X̂k = X̂ = round(XΛ) and Ŷ⊤ = MY⊤ for
suitable diagonal scalings Λ and M

X←MXk+1;
Y⊤ ← Xk+2 . . .XJ ;

end
Quantize XY⊤ via the optimal algorithm, yielding
X̂J−1 = X̂ = round(XΛ) and
X̂J = Ŷ⊤ = round(YM)⊤ for suitable diagonal
scalings Λ and M

5 Experiments
To validate the approach, we consider a matrix Z ∈ Rn×n

with n = 8192, written as the product of 13 orthonormal ran-
dom butterfly factors, whose entries are generated as in section
3. Figure 6.1 plots the quantization error obtained on average
for 10 random instances, for t varying from 2 to 11. We com-
pare the naive RTN baseline approach to our Algorithm 2. Our
algorithm significantly reduces the quantization error: its accu-
racy approximately behaves as O(2−1.4t), which is consistent
with our previous analysis for rank-one matrices. Thanks to this,
our algorithm can achieve an accuracy equivalent to the RTN
baseline (which behaves as O(2−t) as expected) with a lower
precision of t′ = t/1.4, which represents a 1 − 1/1.4 ≈ 30%
reduction of storage.

6 Conclusion and perspectives
We proposed an optimal algorithm to quantize rank-one ma-

trices and used it to quantize butterfly matrix products. The
algorithms show promising gains with respect to the naive RTN
strategy, and a natural perspective is their complex-valued ex-
tension, to deal with, e.g., quantized Fast Fourier Transforms.
Another problem is to directly include such quantization within
an algorithm to approximate a "dense" matrix Z as a butterfly
product [5]. This is likely to require optimizing ∥B − x̂ŷ⊤∥2F
when B is not necessarily of rank one, a problem that could
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Figure 6.1 – Average quantization error for 10 random matrices
of order n = 8192 decomposed as 13 butterfly factors, as a
function of t, for the RTN baseline and our Algorithm 2.

be adressed via heuristics relying on our optimal quantization
algorithm. Finally, since scaling invariance – which is at the
heart of our optimal rank-one quantization algorithm – has also
led to heuristic schemes ot quantize deep ReLU networks [7], an
exciting challenge is to extend our principled approach in such a
setting, possibly up to extreme one-bit quantization [1].
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