
Channel State information as a Source of Shared
randomness and an Authentication Factor

Muralikrishnan Srinivasan1, Sotiris Skaperas2, Mahdi Shakiba Herfeh2, and Arsenia Chorti2

Abstract—In this paper, we devise preprocessing schemes to
disentangle channel state information (CSI) into predictable
and unpredictable components to simultaneously provide two
cornerstone security operations. The predictable components are
used for node authentication and the unpredictable components
for secret key generation (SKG). For the case of SKG, to
prevent Eve from exploiting potential spatial, frequency or time
correlations with the legitimate users, which would reduce the
effective key space through a decrease in the brute force attack
size, in this work, we emphasise the need for reducing the spatial
correlation (SC) at different transmitter locations. We also study
the trade-off between SC and reconciliation in the uplink and
the downlink. Furthermore, we discuss the importance of a more
robust criterion - independence - over decorrelation between the
legitimate users and eavesdroppers. Finally, we propose a metric
for quantifying uniqueness in the predictable components for
node authentication, using the total variation distance (TVD).

Dans cet article, nous concevons des schémas de prétraitement
pour dissocier les informations d’état de canal (CSI) en com-
posantes prévisibles et imprévisibles afin de fournir simul-
tanément deux opérations de sécurité clés. Les composantes
prévisibles sont utilisées pour l’authentification des nœuds et les
composantes imprévisibles pour la génération de clés secrètes
(SKG). Pour le cas de la SKG, afin d’empêcher Eve d’exploiter les
corrélations spatiales, fréquentielles ou temporelles potentielles
avec les utilisateurs légitimes, ce qui réduirait l’espace de clé
efficace grâce à une diminution de la taille de l’attaque par force
brute, dans ce article, nous mettons l’accent sur la nécessité de
réduire la corrélation spatiale (SC) à différents emplacements de
transmission. Nous étudions également le compromis entre la SC
et la réconciliation en liaison montante et en liaison descendante.
De plus, nous discutons de l’importance d’un critère plus robuste
- l’indépendance - par rapport à la décorrélation entre les utilisa-
teurs légitimes et les espions. Enfin, nous proposons une métrique
pour quantifier l’unicité dans les composantes prévisibles pour
l’authentification des nœuds, en utilisant la distance de variation
totale (TVD).

I. INTRODUCTION

The wireless channel between two legitimate users is in-
trinsic to the users’ environment and is affected by users’
movements or scatterers. Since the characteristics of the wire-
less medium between two users are both location-based and
random, the channel impulse response can be exploited to
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generate keys for authentication while any particular channel
realization can be used as an entropy source for confidentiality
(e.g., by generating keys that are used with symmetric block
cyphers) [1]–[4].

Building on this premise, in this work, we view the wire-
less fading coefficients as consisting of two parts, namely a
predictable part (large scale fading including path loss and
shadowing) and an unpredictable part (small scale fading) [5].
The path loss is deterministic (i.e., location-based) and, there-
fore, useful for authentication purposes, e.g., using localization
information in multi-factor authentication protocols [6], while
shadowing exhibits high correlation in time/frequency/space.
On the contrary, the small-scale fading is a valuable entropy
source for secret key generation (SKG).

A. Secret key generation

SKG builds on three principles: (i) channel reciprocity
between Alice and Bob during the channel coherence time,
(ii) spatial independence (typically measured through decorre-
lation), in theory at distances of the same order of magnitude
as the wavelength, and (iii) temporal variation, mainly due to
node mobility [1]. Note that in most works, SKG is performed
without systematically removing the predictable and spatially
or temporally correlated components of the wireless channel
coefficients [7]–[9]. To truly achieve spatial decorrelation,
the predictable components of the channel state information
(CSI) must be disentangled and removed from the remaining
components. Furthermore, channel realizations may exhibit
non-linear dependencies or the underlying distributions might
not be Gaussian; in these cases, correlation is a poor measure
of independence. Therefore, there is also a need to extend our
investigation to spatial independence as opposed to just spatial
decorrelation.

B. Localization based node authentication

Authentication requires a predictable and verifiable source
of uniqueness, dependent, for example, on the node locations
[10]. In other words, the channel components used for au-
thentication must be different for each location though not
necessarily decorrelated. Also, it is beneficial if the compo-
nents do not vary with time [11]. In [12]–[14] physical layer
authentication approaches are proposed by exploiting different
types of channel parameters. In an earlier contribution, we
have shown that the first two or three principal components
of a principal component analysis (PCA) suffice to largely
capture most of the predictable part of the CSI [15].



C. Contributions

Despite the immense bibliography in RF fingerprinting and
SKG, a systematic treatment of the CSI as jointly a source
of uniqueness and entropy is missing. To the best of our
knowledge, only a few papers such as [16], [17] aim to achieve
both device authentication and SKG simultaneously in the
context of body area networks. Therefore, this paper aims
to fill this gap and build preprocessing approaches for joint
SKG and authentication with a fresh perspective by focusing
on removing the correlations and dependencies across user
locations. In brief,

1) We disentangle the predictable components from the
unpredictable components using PCA and two different
unsupervised learning methods based on Autoencoders
(AE).

2) We discuss in detail the trade-off between SC at trans-
mitter locations and non-reciprocity between the uplink
and downlink components used for SKG.

3) We propose to evaluate spatial independence using the d-
variable Hilbert-Schmidt independence criterion (dHSIC)
[18].

4) We use the total variation distance (TVD) to study
spatial uniqueness (in the form of density distance) in
the components used for node-authentication.

By employing these preprocessing schemes, the channel com-
ponents that are the building blocks for the following two cor-
nerstone security operations can be provided simultaneously:
(i) spatially decorrelated and independent, but reciprocal com-
ponents for SKG1 and (ii) spatially separable but temporally
invariant components for node authentication.

II. SYSTEM MODEL

Consider single-antenna legitimate nodes, referred to as
Alices and a base station referred to as Bob, over a fading
channel. Alices’ spatial locations are denoted by {xn}Nn=1

n = 1, . . . , N , where {xn}Nn=1 ∈ RL and L denotes the spatial
dimensions considered (typically L = 2). Let the channel
function mapping the spatial locations to the M×1 CSI vectors
{hn}Nn=1 denoted by H : RL → CM , where M is the number
of snapshots in the time domain. Alice and Bob exchange pilot
signals so that their respective observations can be modelled
as

ynu = hns+ nnu, n = 1, . . . , N , u ∈ {a, b}, (1)

where the index a denotes an Alice, b denotes Bob; nna and
nnb are complex circularly symmetric Gaussian noise vari-
ables and the pilot symbols s are chosen from binary phase-
shift keying (BPSK) constellation [19]. The channel estimates
at Alice and Bob, respectively, are denoted by hna = yna

and hnb = ynb for n = 1, . . . , N . Note that we require
high-dimensional CSI from as many distinct transmit locations
(Alices) as possible to perform accurate preprocessing at fast
rates, which is available in all modern wireless systems [20].

1Note that tackling the third principle - temporal variation - is beyond the
scope of this work

III. PROPOSED PREPROCESSING

We learn the functional mapping that captures the pre-
dictable spatially correlated components and the unpredictable
spatially decorrelated components of the CSI vectors sepa-
rately, applying: (i) PCA; and (ii) AE. PCA is a linear approach
but straightforward and computationally more efficient than
AE. On the other hand, AE can capture non-linear dependen-
cies but is also prone to overfitting due to many parameters.

A. PCA

Let Hu = [h1u, · · · ,hNu] denote the observed channel.
U is the M × M matrix whose rows are the eigenvectors
of the matrix Cov(Hu), sorted in decreasing order. In many
scenarios, e.g., Rician and generally line of sight settings, the
first few PCs correspond to the dominant large-scale fading
components and the rest of the PCs correspond to the other
residual components and noise. Using the eigenvectors D̂×M
matrix U1:D̂ corresponding to the first D̂ PCs, we compute the
dominant predictable part of the observed channel, as follows,

Ĥu = UH
1:D̂

Wu, (2)

where the D̂ ×M matrix Wu is

Wu = U1:D̂Hu, (3)

and Ĥu =
[
ĥ1u, · · · , ĥNu

]
for u ∈ {a, b} is a M×N matrix.

Once the dominant (predictable) components are removed,
we construct the unpredictable part of the observed channel,
denoted as H̃u, using the eigenvectors corresponding to the
D̂+ 1-th PC to D̂+ D̃-th PC, where H̃u =

[
h̃1u, · · · , h̃Nu

]
for u ∈ {a, b}.

Note that the components beyond D̂+ D̃ are dominated by
and neglected while calculating the residuals. To efficiently
disentangle into predictable and unpredictable parts, the pair
{D̂, D̃} has to be chosen such that the residuals are inde-
pendent with minimal effect on the quality of reconciliation
between Alices’ and Bob’s residuals (i.e., the reciprocity
between Alices’s and Bob’s should not be too compromised).

B. Auto-encoders

AE is a neural network that learns two functions, an encoder
that maps the M dimensional input matrix hnu into D̂
dimensional encoded values wnu ∀ n = 1, . . . , N and for
u ∈ {a, b} and a decoder that maps the encoded values back
to an M dimensional output ĥnu, ∀ n = 1, . . . , N and for
u ∈ {a, b}, such that the loss-function

E1 =
1

N

N∑
n=1

‖hnu − ĥnu‖22, for u ∈ {a, b}, (4)

which is the mean square error (MSE) is minimal. AE is
assumed to implement a denoised D̃-dimensional encoded
representation wnu, ∀ n = 1, . . . , N that can completely
encode the dominant components. We treat the output of the
decoder ĥnu,∀n = 1, . . . , N, for u ∈ {a, b} as the dominant
predictable components under the conjecture that most of the
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received signal strength is due to large scale fading effects.
Here again, we assume that the residuals{

h̃nu(D̂)
}N

n=1
= {hnu − ĥnu}Nn=1, for u ∈ {a, b} (5)

are the unpredictable components of the channel vectors. Also,
the value of D̃ is a hyperparameter that must be tuned to
balance the desired SC with the reciprocity of the residuals
in the uplink and the downlink. Since we want to lower
correlation, the loss function can also explicitly specify a
correlation term instead of the MSE. In such a case, the
following loss function is proposed:

E2 =
1

N

N∑
n1=1

n2∈U(n1)

h̃H
n1uh̃n2u, for u ∈ {a, b}, (6)

as the inner product of the residual at each location and that
from the neighbouring locations. Here, U(n1) is the nearest
neighbours of the n1-th Alice-Bob pair.

IV. NUMERICAL RESULTS

To perform simulations, we obtain the channel frequency
response (CFR) between transmitters (Alices) at N = 400
equi-distant (1 m) spatial locations within a square area on
the ground, between x = 100 and x = 290 and y = −100
and y = 90 and a receiver (Bob) at the location (x, y, z) =
(0, 0, 10). The number of snapshots are M = 128, obtained at
a carrier frequency of 2.68 GHz, using the popular Quadriga
channel models [21]. To create a temporal variations in the
channel, the Alices are assumed to move at a speed of 0.5 m/s
and we capture 100 snapshots per second.

A. PCA

In this study, we investigate the effect of preprocessing using
PCA on the residuals for an SNR of 20 dB. Fig. 1 shows the
variation of three metrics: i) the average correlation coefficient
(CC) between locations and their nearest neighbors, ii) the
statistical independence represented by dHSIC [18], and iii)
the average mismatch probability (MP) between Alices and
Bob as a function of the pair D̂, D̃ in increments of 2. The
average correlation coefficient (CC), statistical independence,
and average mismatch probability (MP) are examined. With
no preprocessing, CC is around 0.49, and MP is nearly 0.
For D̂ = 2 and D̃ = 20, the CC drops to 0.35, with
no significant increase in MP. This is the ”Dominance of
uncorrelated components” regime. Beyond D̂ = 14, where
most of the predictable components are removed and noise
becomes dominant, the drop in CC is more pronounced, and
MP increases. This is the ”Dominance of Noise” regime.
The average dHSIC values follow a trend similar to CC,
indicating likely independence. However, dHSIC does not
follow the CC drop for D̂ = 2 and D̃ > 10.

In Fig. 2, the average TVD between the predictable com-
ponents of Alice and those of her neighbours is plotted for
varying D̂. We observe that picking only the first PCA com-
ponent provides Alice’s best separation from her neighbours.
The result for D̂ = 0 is for the original measurements. To

TABLE I: The layers and activation function for AE1. For
AE2 the only change is that the dimensions of the input and

the output layers are 400.
Layer Dimensions Activation
Input 200 Linear

1 100 tanh
2 50 softplus
3 20 tanh

Intermediate D̂ linear
4 20 relu
5 50 softplus
6 100 tanh

Output 200 Linear

TABLE II: AE: Key results
D̂ 1 8

SNR (dB) 5 20 5 20

AE type AE1 AE2 AE1 AE2 AE1 AE2 AE1 AE2

Original-CC 0.36 0.36 0.48 0.48 0.36 0.36 0.48 0.48

Residual-CC 0.34 0.28 0.44 0.35 0.30 0.20 0.42 0.32

Original-dHSIC 0.64 0.64 0.82 0.82 0.64 0.64 0.82 0.82

Residual-dHSIC 0.6 0.58 0.78 0.72 0.43 0.28 0.75 0.75

MP 0.35 0.35 0.08 0.08 0.34 0.40 0.10 0.11

explain the utility of disentangling the predictable components
visually, in Fig. 3, we show the variation of the magnitude of
the original channel and the predictable components vs time
for six neighbours from the 400 locations.

B. AE

Table I shows the layers and activation function of the
Autoencoder (AE), and it is based on the AE in [20]. There
are two types of AE: AE1 with mean squared error (MSE)
loss function and AE2 with dot-product loss function. Results
for both types of AE are presented in Table II. As shown in
Table II, the CC decreases as the SNR decreases and the MP
increases. The AE has more freedom to represent predictable
components with an increase in encoding dimensions D̂. For
AE2, the residual component has a CC of 0.32 at D̂ = 8
and SNR= 20 dB, which is lower than the CC achieved by
PCA at D̂ = 2 and D̃ = 20. Incorporating an independence
criterion in the AE loss function directly could improve the
performance.

V. CONCLUSIONS

In this paper, we built and evaluated PCA and AE based
preprocessing approaches for disentangling the predictable
components from the unpredictable components of wireless
fading channel realizations. We discussed in detail the trade-
off between SC at transmitter locations and reciprocity or the
lack of mismatch between the uplink and downlink for the
unpredictable components used for SKG. We also addressed
the necessity for a much more decisive spatial independence
criterion using dHSIC. We showed, by simulations, the su-
periority of AE in reducing the SC by incorporating the CC
explicitly as a loss function. Finally, we studied the spatial
uniqueness in the predictable components used for node-
authentication using TVD.
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Fig. 1: Trade-off for the Original and Residual components for SNR = 20 dB. Darker colours indicate lower values.

0 5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
o
ta

l 
v
a
ri
a
ti
o
n
 d

is
ta

n
c
e

SNR=20dB

SNR=5dB

Fig. 2: Total Variation Distance vs D̂
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(a) Original signals
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(b) Predictable components

Fig. 3: Separability of 6 neighbours for the original signal
and the predictable component with D̂ = 1 for SNR= 20 dB

REFERENCES

[1] J. Zhang, G. Li, A. Marshall, A. Hu, and L. Hanzo, “A new frontier for
iot security emerging from three decades of key generation relying on
wireless channels,” IEEE Access, vol. 8, pp. 138 406–138 446, 2020.

[2] A. Chorti, C. Hollanti, J.-C. Belfiore, and H. V. Poor, “Physical layer
security: a paradigm shift in data confidentiality,” in Physical and data-
link security techniques for future communication systems. Springer,
2016, pp. 1–15.

[3] M. Mitev, A. Chorti, M. Reed, and L. Musavian, “Authenticated secret
key generation in delay-constrained wireless systems,” EURASIP J.
Wirel. Commun. Netw., vol. 2020, pp. 1–29, 2020.

[4] M. Shakiba-Herfeh and A. Chorti, “Comparison of short blocklength
slepian-wolf coding for key reconciliation,” in 2021 IEEE Statistical
Signal Processing Workshop (SSP). IEEE, 2021, pp. 111–115.

[5] A. Goldsmith, Wireless communications. Cambridge university press,
2005.

[6] M. Mitev, M. Shakiba-Herfeh, A. Chorti, M. Reed, and S. Baghaee,
“A physical layer, zero-round-trip-time, multifactor authentication pro-
tocol,” IEEE Access, vol. 10, pp. 74 555–74 571, 2022.

[7] G. Li, A. Hu, J. Zhang, L. Peng, C. Sun, and D. Cao, “High-agreement
uncorrelated secret key generation based on principal component analy-
sis preprocessing,” IEEE Trans. Commun., vol. 66, no. 7, pp. 3022–3034,
2018.

[8] Y. Peng, P. Wang, W. Xiang, and Y. Li, “Secret key generation based on
estimated channel state information for tdd-ofdm systems over fading
channels,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5176–
5186, 2017.

[9] W. Xi, C. Qian, J. Han, K. Zhao, S. Zhong, X.-Y. Li, and J. Zhao,
“Instant and robust authentication and key agreement among mobile
devices,” in Proc. 2016 ACM SIGSAC Conf. Comput. Commun. Secur.,
2016, pp. 616–627.

[10] W. Njima, M. Chafii, A. Chorti, R. M. Shubair, and H. V. Poor, “Indoor
localization using data augmentation via selective generative adversarial
networks,” IEEE Access, vol. 9, pp. 98 337–98 347, 2021.

[11] M. Shakiba-Herfeh, A. Chorti, and H. Vincent Poor, Physical Layer
Security: Authentication, Integrity, and Confidentiality. Springer Inter-
national Publishing, 2021, pp. 129–150.

[12] X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wire-
less security enhancement: current challenges and future developments,”
IEEE Commun. Mag., vol. 54, no. 6, pp. 152–158, 2016.

[13] Q. Li, H. Fan, W. Sun, J. Li, L. Chen, and Z. Liu, “Fingerprints in the
air: Unique identification of wireless devices using rf rss fingerprints,”
IEEE Sensors J., vol. 17, no. 11, pp. 3568–3579, 2017.

[14] H. Fang, X. Wang, and L. Hanzo, “Learning-aided physical layer
authentication as an intelligent process,” IEEE Trans. Commun., vol. 67,
no. 3, pp. 2260–2273, 2018.

[15] M. Srinivasan, S. Skaperas, and A. Chorti, “On the use of csi for the
generation of rf fingerprints and secret keys,” To appear in 25th Int. ITG
Workshop on Smart Ant., 2021.

[16] L. Shi, J. Yuan, S. Yu, and M. Li, “Ask-ban: Authenticated secret key
extraction utilizing channel characteristics for body area networks,” in
Proc. of the 6th ACM Conf. Secur. Priv. Wireless Mobile Netw., 2013,
pp. 155–166.

[17] L. Shi, J. Yuan, S. Yu, and M. Li, “Mask-ban: Movement-aided
authenticated secret key extraction utilizing channel characteristics in
body area networks,” IEEE Internet Things J., vol. 2, no. 1, pp. 52–62,
2015.

[18] N. Pfister, B. Buhlmann, and J. P. Scholkopf, “Kernel-based tests for
joint independence,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 80, no. 1, pp. 5–31, 2018.

[19] A. Chorti, “Optimal signalling strategies and power allocation for
wireless secret key generation systems in the presence of a jammer,” in
2017 IEEE International Conference on Communications (ICC). IEEE,
2017, pp. 1–6.

[20] C. Studer, S. Medjkouh, E. Gonultas, T. Goldstein, and O. Tirkkonen,
“Channel charting: Locating users within the radio environment using
channel state information,” IEEE Access, vol. 6, pp. 47 682–47 698,
2018.

[21] S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A 3-d
multi-cell channel model with time evolution for enabling virtual field
trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256,
2014.

4


