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Abstract—We investigate the downlink of a cell-free massive
multiple-input multiple-output (CF-mMIMO) system with non-
orthogonal multiple access (NOMA), where two sets of user
equipment (UE) with distinct quality of service (QoS) require-
ments are served. The cUEs are required to achieve a sum
ergodic rate maximization goal, whereas the pUEs need to fulfill
a minimum rate threshold. Since there is no feasible optimal
solution available, we propose computationally feasible power-
control and clustering algorithms that maximize the ergodic rate
of cUEs without compromising the rate requirements of pUEs.

Nous étudions la liaison descendante d’un système à entrées
multiples et sorties multiples massif (CF-mMIMO) sans cellule
avec accès multiple non-orthogonal (NOMA), où deux ensembles
d’équipements utilisateurs (UE) avec des exigences de qualité de
service (QoS) distinctes sont servis. Les UE de type cUE doivent
atteindre un objectif de maximisation du débit ergodique total,
tandis que les UE de type pUE doivent respecter un seuil de débit
minimum. Comme il n’existe pas de solution optimale réalisable,
nous proposons des algorithmes de contrôle de puissance et
de regroupement calculatoirement réalisables qui maximisent le
débit ergodique des cUEs sans compromettre les exigences de
débit des pUEs.

Index Terms—Cell-free massive MIMO, NOMA, Optimization,
Power-control, QoS.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (CF-
mMIMO) systems have been extensively studied under dif-
ferent scenarios, such as downlink pilot training, channel
hardening, hardware impairments, non-orthogonal multiple
access (NOMA), etc., by several treatises [1]–[3]. Concerning
NOMA, in particular, its intersection with CF-mMIMO offers
a significant advantage in terms of spectral efficiency (SE)
gains [4]. There has been some early literature on the study
of the performance of NOMA in CF-mMIMO systems [2],
[5]. In a very recent and essential contribution [4], the authors
have extensively studied the performance of three different
precoders in the context of power-domain NOMA in CF-
mMIMO systems.

It has been shown in [4] that NOMA-enabled CF-mMIMO
systems allow more users to be simultaneously supported
when compared to OMA. However, the optimal power al-
location and clustering of users in the NOMA-enabled CF-
mMIMO system is still largely unexplored, especially when
the user equipment (UEs) have different quality of service
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(QoS) requirements. Very recently, an algorithm to maximize
the total uplink SE subject to SIC and QoS constraints was
proposed in [6], while the use of unsupervised machine learn-
ing algorithms to cluster users was discussed only recently in
[7].

This paper considers a downlink NOMA-enabled CF-
mMIMO system without pilot contamination and devises
power control and clustering strategies that maximize the SE
of a set of cellular UEs with moderate throughput require-
ments. Simultaneously, the algorithm ensures that a minimum
SE is guaranteed for a group of bandwidth-hungry users,
which we refer to as priority UEs.1 Furthermore, we study
the performance of our allocation strategies with extensive
simulations. The following notation is used in the paper: C
denotes a complex number, Z denotes an integer, (·)H denotes
the Hermitian of a vector/matrix, E(·) denotes the expectation
of a random variable, I denotes the identity matrix, CN (·)
denotes the complex normal random variable and 1(·) denotes
the indicator function.

II. SYSTEM MODEL

We consider the downlink of a CF-mMIMO system with
M access points (APs), N cellular user equipment (cUE) and
K priority user equipment (pUE). We also assume that M �
N +K. Each AP has L antennas and each user has only one
1 antenna. The channel coefficient, denoted by g

(c)
mn ∈ CL×1,

between the m-th AP and the nth cUE, is modeled as follows:

g(c)
mn =

√
β
(c)
mnh(c)

mn, ∀m = 1, . . . ,M, ∀n = 1, . . . , N, (1)

where β
(c)
mn represents the large-scale fading coefficient and

h
(c)
mn represent small-scale fading coefficients that ∀m =

1, . . . ,M , n = 1, . . . , N are independent and identically
distributed (i.i.d.) random variables. Similarly, the channel co-
efficient, g

(p)
mk ∈ CL×1, between the m-th AP and the kth pUE,

is modeled as g
(p)
mk =

√
β
(p)
mkh

(p)
mk, ∀m = 1, . . . ,M, ∀k =

1, . . . ,K, where β(p)
mk represents the large-scale fading coef-

ficient and h
(p)
mk represents the small-scale fading coefficient,

with the same set of assumptions as g
(c)
mn.

A. Training phase

Let τ denote the uplink training duration in samples per
coherence interval. Let

√
τφ

(c)
n ∈ Cτ×1 be the pilot sequence

transmitted by the nth cUE. Similarly,
√
τφ

(p)
k ∈ Cτ×1 be

1Typically, priority users might also have stringent delay constraints, an
aspect that will be investigated in future works.



the pilot sequence transmitted by the kth pUE. Note that,
if τ > N + K, then we can choose pairwise orthonormal
pilot sequences and hence avoid pilot contamination [8]. The
signal received at m-th AP ∀m = 1, . . . ,M during the training

phase can be expressed as Ym =
√
τρ
∑N
n=1 g

(c)
mn

(
φ

(c)
n

)H
+

√
τρ
∑K
k=1 g

(p)
mk

(
φ

(p)
k

)H
+ Zm, where ρ is the normalized

transmit SNR of each pilot symbol, Zm ∈ CL×τ is the
noise vector whose entries are i.i.d. zero-mean unit-variance
complex Gaussian. To estimate the channel coefficients, define
Ḡm , YmΦ, where Φ = [φ

(c)
1 , . . . ,φ

(c)
N ,φ

(p)
1 , . . . ,φ

(p)
K ].

Ḡm can be then written as

Ḡm =
[√

τρg
(c)
m1 + ñ

(c)
m1, . . . ,

√
τρg

(p)
mK + ñ

(p)
mK

]
, (2)

where ñ
(c)
mn ∼ CN (0, IL) and ñ

(p)
mk ∼ CN (0, IL), since the

entries of ZmΦ ∈ CL×(N+K) are i.i.d. zero-mean and unit-
variance complex Gaussian random variables. Therefore, the
columns of Ḡm are given by ḡ

(c)
mn ∼ CN (0, (1 + τρβ

(c)
mn)IL)

and ḡ
(p)
mk ∼ CN (0, (1 + τρβ

(p)
mk)IL) ∀m = 1, . . . ,M ,

∀n = 1, . . . , N and ∀k = 1, . . . ,K. The MMSE estimator
of the channel coefficients ∀m,n, k is hence given by ĝ

(c)
mn =√

τρβ
(c)
mn

τρβ
(c)
mn + 1

ḡ
(c)
mn and ĝ

(p)
mk =

√
τρβ

(p)
mk

τρβ
(p)
mk + 1

ḡ
(p)
mk. ĝ

(c)
mn and ĝ

(c)
mn

∀m,n, k can also be written as, ĝ
(c)
mn =

√
θ
(c)
mnν

(c)
mn and

ĝ
(p)
mk =

√
θ
(p)
mkν

(p)
mk, respectively, where ν(c)mn and ν(p)mk ∀m,n, k

are CN (0, IL) and θ
(c)
mn =

τρ
(
β(c)
mn

)2

1+τρβ
(c)
mn

and θ
(p)
mk =

τρ
(
β
(p)
mk

)2

1+τρβ
(p)
mk

∀m,n, k. The channel estimation error can then be defined as
ε
(c)
mn = g

(c)
mn − ĝ

(c)
mn where ε

(c)
mn ∼ CN (0, (β

(c)
mn − θ(c)mn)IL).

Similarly, ε(p)mk = g
(p)
mk − ĝ

(p)
mk where ε

(p)
mk ∼ CN (0, (β

(p)
mk −

θ
(p)
mk)IL), ∀m,n, k. Also, for maximum ratio transmission

(MRT) precoding, the precoding vectors from the mth AP
to the users in the nth cUE and kth pUE ∀m = 1, . . . ,M ,
∀n = 1, . . . , N and ∀k = 1, . . . ,K are, respectively, expressed

as w
(c)
mn =

ĝ(c)
mn

E
[∥∥∥ĝ(c)

mn

∥∥∥] and w
(p)
mk =

ĝ
(p)
mk

E
[∥∥∥ĝ(p)

mk

∥∥∥] .

B. Downlink phase

Assuming each cUE is paired with a pUE to form an
nth NOMA pair/cluster, where only one cUE and pUE can
be present in each cluster/pair, we define ωn,k ∈ 0, 1 to
indicate cluster sharing. If the kth pUE is paired with the
nth cUE, then ωn,k = 1, else ωn,k = 0. Users are ordered
in each cluster based on the mean of their effective channel
gains. In every cluster, we assume that the users are ordered
based on the mean of the effective channel gains, similar
to [4]. The effective channel gains of the nth cUE and kth

pUE are given by χ
(c)
n = E

{∣∣∣∣∑M
m=1

(
ĝ
(c)
mn

)H
w

(c)
mn

∣∣∣∣2
}

and

χ
(p)
k = E

{∣∣∣∣∑M
m=1

(
ĝ
(p)
mk

)H
w

(p)
mk

∣∣∣∣2
}

respectively, if the kth

pUE is paired with the nth cUE. Without loss of generality,

in each cluster, we assume that user 1 denotes the user with
higher effective channel gain. Therefore, define the triplets
{gmn1, ĝmn1,wmn1} and {gmn2, ĝmn2,wmn2} to denote the
actual channel, the estimate and the precoding vector of
user 1 and user 2 in each cluster. For example if χ(c)

n >

χ
(p)
k , then {gmn1, ĝmn1,wmn1} , {g(c)

mn, ĝ
(c)
mn,w

(c)
mn} and

{gmn2, ĝmn2,wmn2} , {g(p)
mk, ĝ

(p)
mk,w

(p)
mk} and vice-versa.

Higher power is allocated to the user with lower effective
channel gain. i.e., Pn1 ≤ Pn2, where Pnr = Puδnr is the
transmit power and qnr denotes the data signal to the rth
user in the nth cluster ∀n = 1, . . . N . Note that, the total
power allocated to each cluster from each AP is Pu and
Pu = Total power budget

NM .
The 1st user decodes the messages of the 2nd user using

SIC. Also assume that
∑2
r=1 δnr = 1,∀n. The mth AP

therefore transmits xm =
∑N
n=1

∑2
r=1 wmnr

√
Pnrqnr. The

received signal at the rth user in the nth cluster can be
expressed, using the statistical knowledge of the effective
channel gains at the users, as

ynr =

M∑
m=1

√
PnrE

{
gH
mnrwmnr

}
qnr︸ ︷︷ ︸

T0:desired signal

+

M∑
m=1

√
Pnr

(
gH
mnrwmnr − E

{
gH
mnrwmnr

})
qnr︸ ︷︷ ︸

T1:beamforming gain uncertainty

+

M∑
m=1

gH
mnk

∑
r′<r

wmnr′
√
Pnr′qnr′︸ ︷︷ ︸

T2:intra-cluster interference after SIC

+

M∑
m=1

gH
mnr

N∑
n′=1
n′ 6=n

2∑
r′=1

wmn′r′
√
Pn′r′qn′r′

︸ ︷︷ ︸
T3:Inter-cluster interference

+nnk, (3)

where the desired signal is defined by T0, the beamforming
gain uncertainty is defined by T1. The third term T2 represents
the intra-cluster interference after SIC and T3 represents the
inter-cluster interference.

In the NOMA-enabled CF-mMIMO system with MRT pre-
coding, the approximate instantaneous signal-to-interference-
noise ratio (SINR) of the rth user in the nth cluster is γnr,
for finite values of M,L,N and K, is given by (4), at
the top of the next page, where ηnr ,

∑M
m=1 gH

mnrwmnr,
ηnr′ ,

∑M
m=1 gH

mnrwmnr′ and ηn′r′ ,
∑M
m=1 gH

mnrwmn′r′ .
The instantaneous rate for the rth user in the nth cluster

can then be computed as Rnr = log2(1 + γnr), and the
ergodic rate by R̄nr = E[log2(1+γnr)]. Note that obtaining a
closed-form expression for the ergodic rate is mathematically
intractable. However, we can utilize the use-and-then-forget
bound to obtain an approximation [4]

R̄nr ≈ log2(1 + γ̄nr), (5)
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γnr =
Pnr

∣∣E {ηnr}∣∣2
PnrE

{∣∣ηnr − E {ηnr}
∣∣2}+

∑
r′<r

Pnr′E
{
|ηnr′ |2

}
+

N∑
n′=1
n′ 6=n

2∑
r′=1

Pn′r′E
{
|ηn′r′ |2

}
+ 1

. (4)

where γ̄nr is given by (6), at the top of the next page, and
can be derived trivially following the steps in [4].

III. SPECTRUM AND POWER ALLOCATION FORMULATION

Let R̄
(c)
n ∀n and R̄

(p)
k ∀k denote the ergodic

rate of cUEs and pUEs respectively. They can
be expressed, in terms of (5), as R̄

(c)
n =∑K

k=1 R̄n11χ(c)
n >χ

(p)
k

1ωn,k
+

∑K
k=1 R̄n21χ(c)

n <χ
(p)
k

1ωn,k

and R̄
(p)
k =

∑N
n=1 R̄n11χ(p)

k >χ
(c)
n
1ωn,k

+∑N
n=1 R̄n21χ(c)

n <χ
(p)
k

1ωn,k
The spectrum and power allocation

problem is formulated in this work as:

max
{ωn,k},{δnr}

N∑
n=1

R̄(c)
n , (7)

s.t. R̄
(p)
k ≥ Rth,∀k (7a)∑
n

ωn,k = 1, ωn,k ∈ {0, 1},∀k, (7b)∑
k

ωn,k = 1, ωn,k ∈ {0, 1},∀n, (7c)

0 ≤ δn1 ≤ δn2 ≤ 1,∀n, (7d)
δn1 + δn2 = 1,∀n, (7e)

We have constraints for minimum rate requirements for pUE
links (Eq. (7a)), one pUE link per cUE cluster (Eq. (7b)),
one cUE cluster per pUE link (Eq. (7c)), and NOMA power
constraints for cUE and pUE links (Eqs. (7d) and (7e)). Due
to integer constraints, obtaining an optimal solution to the
power and spectrum allocation problem is computationally
exhaustive. Therefore, we discuss sub-optimal yet effective
power allocation and clustering procedures in the following
subsections.

A. Power allocation procedure

To circumvent the power-allocation search over 2N possibil-
ities, we assume that all the 2(N−1) inter-cluster interference
terms are present, which is a much stricter condition to be
satisfied. Now, for a cluster n with a cUE and pUE, note that
the objective function monotonically increases with the power
allocated to the cUE. However, the presence of the minimum
rate constraints of the priority users should also be satisfied. If

χ
(c)
n > χ

(p)
k , then

LPuδn2

(
M∑

m=1

√
θmnr

)2

Pu

M∑
m=1

βmnr+2(N−1)Pu

M∑
m=1

βmnr+1

≥ 2Rth−

1 and if χ(c)
n < χ

(p)
k ,

LPuδn1

(
M∑

m=1

√
θmnr

)2

δn1Pu

M∑
m=1

βmnr+2(N−1)Pu

M∑
m=1

βmnr+1

≥

2Rth − 1. The above relations have to be satisfied with

Algorithm 1 Greedy Algorithm for cUE-pUE clustering
1: Arbitrarily assign one pUE link to each of the N clusters.
2: Compute power allocation as in Section III-A and compute

the objective obj =
∑N
n=1 R̄

(c)
n .

3: for n = 1 : N − 1 do
4: pUE in the nth cluster is k = arg max

k
ωn,k

5: for n′ = n : N do
6: pUE in the n′th cluster is k′ = arg max

k
ωn′,k

7: Exchange the pUEs between the nth and n′th cluster,
i.e., ωn,k = 0, ωn,k′ = 1, ωn′,k = 1 and ωn′,k′ = 0

8: Denote the exchange as ζn,n′

9: Compute the new power allocation and compute the
new objective obj∗(ζn,n′).

10: end for
11: Exchange the pUEs between the nth and n′th cluster if

n′ = arg max
n′

obj∗(ζn,n′) and obj∗ > obj.

12: end for
13: Return the clustering result.

equality, otherwise the power allocated to cUEs can be further
increased while satisfying the above relations and maximizing
the objective at the same time. Therefore, solving the above
equations under the equality sign will give us the optimal
(δ∗n1, δ

∗
n2). If δ∗n1 > δ∗n2, then the pUE is not served in that

cluster and only the cUE is served.

B. Clustering

One sub-optimal solution is to search sequentially for the
clustering that maximizes the objective by considering all N !
different clustering arrangements. An alternative is a greedy
heuristic that takes N2−N

2 steps to obtain a sub-optimal
solution. At each step, the algorithm exchanges the pUEs of
the nth cluster with each of the subsequent clusters, computes
the power allocation, and the new objective function. If the
new objective function is greater than the existing one, the
corresponding exchange is chosen. This process is repeated
until n = N − 1. The steps of the clustering algorithm are
detailed in Algorithm 1.

IV. SIMULATION RESULTS

We examine a CF-mMIMO system with varying M , N ,
and K in a D×D km2 square area with M APs and N +K
users. The total power budget is 100 mW across all APs, and
D = 1. Our simulation setup is similar to that in [8]. We plot
the sum ergodic rate of cUEs obtained by the greedy clustering
algorithm against M , for different N , K, and Rth in Figs. 1
and 2. Table I shows the corresponding average percentage of

3



γ̄nr =

LPnr

(
M∑
m=1

√
θmnr

)2

Pnr
M∑
m=1

βmnr +
∑
r′<r

Pnr′
M∑
m=1

βmnr + 2(N − 1)Pu
M∑
m=1

βmnr + 1

. (6)
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Fig. 1: Sum of ergodic rate of cUEs vs No of APs M for
N = K = 5, L = 8 for perfect SIC

TABLE I: Table: Average percentage of pUEs satisfying the
rate threshold for Greedy allocation

N,Rth M = 32 M = 64 M = 128
N = 5, Rth = 1 69.5 87.5 96.5
N = 5, Rth = 2 39.5 58.5 81.0
N = 8, Rth = 1 58.0 76.8 91.8
N = 8, Rth = 2 24.2 43.2 66.8

pUEs meeting the rate threshold. The greedy clustering algo-
rithm performs similarly to the sequential clustering algorithm
with fewer steps. The rate achieved by the greedy algorithm
is better than random clustering for almost all M , N , and
K. We also show the optimal clustering result for N = 5.
The greedy algorithm bridges the gap between random and
optimal clustering by nearly 50%, and for N = 8, the optimal
algorithm is not shown due to computational exhaustion.

As Rth increases, fewer pUEs meet the threshold, resulting
in a higher cUE rate for lower M (M = 32). However, for
higher M values (M = 64 and M = 128), more pUEs
meet the threshold, leading to lower cUE rates due to power
allocation. Nevertheless, the cUE rate for M = 128 increases.
Increasing N and K increases the cUE rate for M = 32 at the
cost of fewer pUEs meeting the threshold, as shown in Table
I. For lower M values, random allocation performs better than
greedy allocation, which prioritizes objective maximization
over pUE satisfaction. However, an algorithm that equally
prioritizes pUEs is not addressed in this letter and can be a
topic for future work.

V. CONCLUSIONS

We studied a NOMA-enabled CF-mMIMO system with
two sets of UEs with different QoS rate requirements in the
downlink. We proposed power-control and clustering solutions
that balance the ergodic rate of cUE with the minimum rate
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Fig. 2: Sum of ergodic rate of cUEs vs No of APs M for
N = K = 8, L = 8 for perfect SIC

TABLE II: Table: Average percentage of pUEs satisfying the
rate threshold for Random allocation

N,Rth M = 32 M = 64 M = 128
N = 5, Rth = 1 85.7 94.6 98.5
N = 5, Rth = 2 52.6 74.1 88.9
N = 8, Rth = 1 73.1 89.0 96.6
N = 8, Rth = 2 27.0 55.1 77.5

requirements of pUEs. Our solutions were sub-optimal but
computationally tractable. We conducted extensive simulations
and found that our greedy clustering heuristic achieved similar
performance to the sequential clustering with a significant
reduction in complexity. The cUEs also achieved a higher
ergodic rate compared to random allocation.
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