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Communication Channel:

n (N, K, dmin) binary linear block code.
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Linear Codes:

The picture can't be displayed.

l A linear code C is totally define by its KxN generator matrix G
or its (N-K)xN parity check matrix H via:
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Example:

The picture can't be displayed.



n “Brute-force” decoding: Out of 2K possible 
solutions, find the most probable (i.e. the codeword 
with minimum discrepency metric).

Maximum Likelihood Decoding:
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l Find the most likely codeword c based on received 
sequence.

l For AWGN, c minimizes the discrepency metric:



Coding/Decoding:

l Mathematical problem: design best code (i.e. 
best performance for given channel).

l Engineering problem: design best code that can be 
implemented.
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LDPC Codes:

v First proposed by R.G. Gallager in 1960’s, and ressurected recently
[Gallager-IRE62, MacKay-IT99] .

v Can achieve near Shannon limit performance with a sophisticated soft 
decision iterative decoding algorithm called belief propagation (BP) 
or sum-product algorithm [Luby-Mitzenmacher-Shokrollahi-
Spielman:IT01, Richardson-Urbanke-IT01, ] .
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Representations of LDPC Codes

Bit (variable) nodes Check nodes



Basic idea:
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•The l bits x1,…,xl must satisfy a single parity-check 
constraint.

• If any of the l bits x1,…,xl is unknown, it can be 
reconstructed if the others are known.

• A single parity-check (SPC) code can correct at 
most one erasure.



v Few 1’s in H.

v An LDPC code is regular if its row and column weights are 
constants (say J and L). Otherwise it is irregular.

v Irregular LDPC codes have better performance than regular
LDPC codes (and turbo codes) in general [Richardson-
Urbanke-IT01] .

Regular and Irregular LDPC Codes:



v Number of 1’s:   J N = M L

v Rate:

Regular (J,L) LDPC codes of length N and dimension K:
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v Defined by edge degree distributions:

fraction of edges connected to degree-i
variable (left) nodes.

fraction of edges connected to degree-j
check (right) nodes.
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Irregular (J,L) LDPC codes of length N and dimension K:
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v Rate:                   
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(the number of edges from variable (left) nodes equals 

the number of edges from check (right) nodes.                   



v A cycle of length l in a Tanner graph is a path comprising l 
edges which closes back on itself.

v The girth of a Tanner graph is the minimum cycle length 
of the graph.

v The shortest possible cycle in a bipartite graph is of 
length-4:

Definitions:



v Cycles of length-6 play an important role in iterative 
decoding:
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- Encoder structure
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- Decoder structure
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- Decoding Algorithms 

vSoft-inputs soft-outputs (SISO) algorithm

Soft-inputs: component decoders can receive and  
make use of extrinsic information.

Soft-outputs: component decoders can provide 
reliability values for each bit, and deliver extrinsic 
information for further processing.

vTurbo decoding algorithms include :

* Symbol-by-symbol maximum a posteriori (MAP), 

* Max-Log-MAP, 

* soft-outputs Viterbi Algorithm (SOVA).



MAP Algorithm
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Max-Log-MAP Algorithm
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Soft-output Viterbi Algorithm (SOVA)

ui=0

ui=1

v Li is the difference between 2 metrics associated with 2 paths.

v No guarantee that both paths are the best,

Þ Li is often overestimated compared to the Max-Log-MAP.
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ui=0Path-1

ui=1
Path-3

ui=0

Path-2

Possible path selection in SOVA

One of the best path may be discarded before remerge the

survivor path: suggests bi-directional SOVA.
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Decoding performance of Bi-directional SOVA  
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Normalized Max-Log-MAP algorithm
v The outputs of Max-Log-MAP algorithm are generally 

overestimated compared to those of the MAP algorithm.

Eb/No (dB) sgn(L1)¹sgn(L2)
sgn(L1)= sgn(L2) sgn(L1)= sgn(L2)

|L1|< |L2| |L1|³ |L2|

0.8 14.6 74.0 11.4
1.0 13.3 74.7 12.0
1.2 11.8 75.7 12.5
1.5 9.7 77.1 13.2
1.7 8.4 78.2 13.4

Percentages associated with the different cases on the 
relationship between L1 and L2.

L1– MAP,    L2 – Max-Log-MAP
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Random Constructions of (J,L) codes:

v Generate an all-0 M x N matrix H.

v Randomly assign L 1’s per row while ensuring 
that no more than J 1’s are assigned per column.

v Run a post processing subroutine to delete 4 
cycles (random swap).



Pseudo-Random Constructions of (J,L) codes:

Progressive edge growth (PEG) algorithm [Hu & al. 02]

v Objective: try to maximize girth g = 2(l+2).

v Edges are assigned one at a time as follows:

v For each bit-i from 1 to N:

(1) Assign first edge to a check node among those of lowest degree.

(2) Assign other edges to check nodes which are not among the neighbors of 
bit-i up to depth-l in the current graph.



depth-0

depth-1

depth-l

bit-i



Random or Pseudo-Random Constructions of 
irregular codes:

v The same approaches can be applied once degree distribution 
determined.

v Best degree distribution depends on channel considered as well 
as decoding algorithm.

v Differential evolution can be applied to determine the best 
distribution corresponding to a given objective function.



Parallel Differential Optimization:

§ Step 1: initialization

§ Step 2: mutation and test
§ Step 3:  compare and update.
§ Step 4:  stopping test



Parallel Differential Optimization

f1 f2 f3 f4
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Algebraic construction of LDPC codes:

























Quasi-Cyclic LDPC codes:

with  I(pj,l)  pxp circulant permutation matrix with 
1 at column-(r + pj,l) mod-p for row-r.
(J,L) regular LDPC code of length N = pL.



n Example: J=2;L=3;ｐ＝５.

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

H =

=  0 0 0
0 2 3



n A (J,L) quasi cyclic (QC) LDPC code is totally 
defined by (J-1)(L-1) integers.

n The quasi cyclic structure allows simple encoding
based on shift registers.

n Girth at most 12 and minimum distance at most 
(J+1)!



1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

Example:



Rate-0.55 Length-4100 Codes:



Rate-0.77 Length-1050 Codes:



Lifted quasi-cyclic LDPC codes:

n Start with (J,L) M1 x N1 small Hb matrix of 
girth g at least 6.

n Replace every 1 by N2 x N2 circulant matrix.
n We obtain a (J,L) LDPC code with:

length N = N1 N2
co-dimension at most M1 N2
girth at least g.



RA-type LDPC codes:

linear time encodable.



LDPC codes over GF(q):

n In H,                   ; i.e. each edge is labeled
by a symbol of GF(q) - ~ rotation -

n Check sum-i:
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Ø A standard LDPC code is characterized by the random connection 

between variable nodes and check nodes.

......

......

Repetition Codes SPC Codes

Variable
  Nodes

 Check
 Nodes

Generalized LDPC codes:



Ø Generalized LDPC codes are obtained by 
replacing (dc, dc-1) SPC with other (dc, k) 
subcodes. [Tanner–IT81]

     Subcodes
  NOT confined
   to SPC codes

(dc1, kc1)

......

......

Repetition Codes

Variable
  Nodes

 Check
 Nodes

(dc2, kc2)

(dcM,kcM)



doubly-GLDPC codes

...
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...... ......

(dv1, kv1)

(dv2, kv2)

(dv3, kv3)

(dvj, kvj)

......

(dvN, kvN)
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kv1
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kv3

kvj

kvN

(dc1, kc1)

(dc2, kc2)

(dcM, kcM)
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Super variable node

Super check node

Transmitted bit
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1 1 1 1 1 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 1 1 1 1 1 
1 0 1 1 0 0 0 1 0 1 1 0 1 0 
0 1 0 0 1 1 1 0 1 0 0 1 0 1 
0 0 1 0 1 1 0 0 1 1 1 0 0 1 
1 1 0 1 0 0 1 1 0 0 0 1 1 0

Construction steps:
Step 1: row expansion

In every row of parity check matrix, each “1” is replaced 
with a subcolumn from the subcode parity check matrix of 
the corresponding super check node based on a one-to-one 
correspondence and each “0” is replaced with a zero subcolumn. 
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1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

1 1 1 0 1 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 1 0 0 0 0 0 0 0

Subcode



Construction steps (continued)
Step 2: column expansion

In every column of parity 
check matrix each “1” in the 
same subcolumn is replaced 
with the same subrow in the 
transposed generator matrix of 
the corresponding super variable 
node based on a one-to-one 
correspondence and each “0” in 
a subcolumn is replaced with a 
zero subrow.
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Ø Target: obtain good threshold

Ø C1 is a rate-7/15 length-7650 code.

Ø Super variable nodes: (6,1) repetition code, (6,2) code with generator

matrix             , (6,4) code with generator matrix , (6,5) SPC code.

Ø Super check node: (15,11) Hamming code

Ø Variable node distribution is                  ,                    ,                    ,
and                   .

Ø Threshold is 0.3dB, only 0.26dB away from capacity.

Construction of DGLDPC code C1

425.04 =l
425.01 =l 075.02 =l

111100
001111

111000 
011100
001110
000111

075.03 =l



Simulation Result of C1

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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Eb/No (dB)

BE
R

Doubly GLDPC
(2,15) GLDPC

The (2, 15) GLDPC code, which is used to compare with C1 , has the same kind 
of check node as C1 ,  i.e., (15,11) Hamming codes. The simulation result of the 
(2, 15) GLDPC code is obtained from [Lentmaier et al.-CL99].



Construction of DGLDPC code C2

Ø Target: lower error floor

Ø C2 is a rate-1/2 length-1536 code.

Ø Super variable nodes: the (4,1) repetition code and the (4,3) SPC code.

Ø Super check node: (15,11) Hamming code

Ø Threshold is 0.77dB.



Simulation Result of C2

0.5 1 1.5 2 2.5 3 3.5 4
10-7

10-6

10-5
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10-3

10-2

10-1

100

Eb/No (dB)

W
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Doubly GLDPC
(2,4)-LDPC code over GF(16)

The rate-1/2 length-1504 (2,4)-LDPC code over GF(16) is used to 
compare with C2. The simulation result of this (2,4)-LDPC code is 
obtained from [Poulliat et al.-ISTC 2006].



Random codes performance comparison on BEC
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General concept:

v Each bit/check node is a processor, receiving messages 
from neighbor nodes, and sending back messages after 
processing.

Main goal: avoid direct correlation assuming incoming messages 
are independent of each other.



Iterative Decoding on BEC:

v MLD: Find information set (K independent positions) without 
erasures  and perform Gaussian elimination: O(N 3).

v Iterative decoding: Propagate information available at each node.
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Processing in bit nodes:

v If node of degree-J,  J+1 copies of bit available:

J estimates from check nodes.

1 estimate from channel.

v Define                                                              . 

v Transmitted information still erasure if all other incoming message 
and initial estimate from channel are erasures:     

)-itfor  nodebit at  ?""  geProb(messa lxl ==

)-itfor  nodecheck at  ?""  geProb(messa lyl ==

1
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Processing in check nodes:

v If node of degree-L,  L incoming bits sum to 0.                

v Transmitted information still erasure if at least 
one incoming message is an erasure:  

1)1(1 ---= L
ll xy



Combining the two equations:

v Threshold: largest value of       such that 

xl 0 ``with l large enough’’.

(xl+1               x > 0 possible)

11
1 ])1(1[ --
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For irregular codes:

v Capacity achieving codes of rate R= 1- have 
been found for the BEC (ex: heavy tail Poisson 
distribution)

)]1(1[1 ll xx --=+ rle
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Finite length issues:
Stopping set: subset V of variable nodes such that all neighbors are 

connected to V at least twice.

These are poor configurations as iterative decoding stuck even if MLD 

possibly correct

e e e



Iterative Decoding on BSC:

v MLD: NP_hard problem.

v Iterative decoding: Propagate information available at each node.
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Gallager algorithm-A:

v At iteration-(i+1), send to check node initial value received from channel, 
unless (J-1) other check values disagree with it.

v Define

v Ways to make an error:    

(1) bit received in error and less than J-1 check sums indicate otherwise.

(2) bit received correctly and all J-1 check sums indicate otherwise.

)-itfor error an  returns sum Prob(check)( iP i =
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v It follows:

v Check sums of weight L indicates an error if L-1 other bits 
contain odd number of errors:
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v A necessary and sufficient condition for  pi+1 < pi:

v This equation can be used to determine the largest value of p0 such that 
pi+1 < pi for i large enough.

v To this end it assumes the incoming messages are independent. On a 
Tanner graph of girth g, it is true for              iterations.

(~g/2 branches to reach 2 opposite nodes on a cycle and 2 branches per 
iteration).
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Gallager algorithm-B:

v At iteration-(i+1), send to check node initial value 
received from channel, unless T(i) other check 
values disagree with it.

T(i) is a threshold associated with iteration-i.

v Using same reasoning as for alg-A, we obtain:
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v The optimum theoretical threshold is the smallest T that 
satisfies:

v Alg-A is equivalent to Alg-B with T(i) = J-1 (hence alg-B 
always better).

v In practice, T(i) adjusted from simulation.
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Iterative Decoding on AWGN:

v y = x + n with xi = (-1)ci and ni = N(0,N0/2)

v Define:

For (J,L) regular code: |N(m)| = L; |M(n)| = J.

Define:
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Belief Propagation (BP) Algorithm:

v BP algorithm is an iterative decoding algorithm [Gallager-
IRE62, MacKay-IT99] .

v Messages can be probabilities, and more conveniently, log-
likelihood ratios (LLR’s) for binary LDPC codes.
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Processing in check nodes:

Principles:

incoming messages + constraints Þ outgoing messages
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Processing in bit nodes:
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BP-Based Algorithm (min-sum)
_____ simplification in check node processing
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v Low complexity;

v Independent of channel characteristics for AWGN channels;

v Degradation in performance.
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APP Algorithm 
_____ simplification in bit node processing
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v Zn is not only for hard decision, but also as a substitution for Zmn.

v Lower computational complexity and storage requirement.

v Introducing correlation in the iterative decoding process.
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Performance of BP and Its Simplified Versions
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APP-based, itr=20   

(1008, 504) regular LDPC Code
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APP-based, itr=30   

(8000, 4000) Regular LDPC Code
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(273, 191) DSC Code
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(1057, 813) DSC Code



Improvement of the BP-based algorithm

Two statements hold:

1. sgn(L1 ) = sgn(L2 ) ;

2. | L1| < | L2| .

check node processing in different algorithms
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Two improvements of the check node processing

Normalized BP-based algorithm:
Divide L2 by a normalization factor a greater than 1,

L2 ¬ L2 / a .

v Decoder parameters, a’s or b’s, need to be optimized.

Offset BP-based algorithm: 
Decreasing |L2 | by a offset value b ,

|L2 | ¬ max(|L2 | - b, 0)  .



Normalized APP-based algorithm

v APP-based algorithm + normalization in check nodes
Þ normalized APP-based algorithm.



Optimizing Parameters by Density Evolution
v Density evolution (DE) is a powerful tool to analyze message-

passing algorithms of LDPC codes [Richardson-IT01].

v Assumptions:

(1) symmetric channels (BSC, AWGN, ……);

(2) decoder symmetry; 

(3) all-0 sequences transmitted;

(4) infinite code length --- loop free. 

v Basic idea: numerically derive the probability density functions (pdf) 
of the messages from one iteration to another, based on decoding 
algorithms, and then determine the bit error rate.





n Threshold phenomenon: for an ensemble of code, a certain 
kind of channels and a decoding algorithm, there exits a 
threshold for a channel parameter, such that the BER 
approaches to 0 with a channel parameter better than this 
threshold, and the BER stays away from zero with a worse 
channel parameter.

n Example:

For AWGN channel with variance s2, BPSK transmission, 
BP as decoding algorithm, and (J,L) = (3, 6)

Þ sT = 0.880 (1.11 dB)  [Richardson-Urbanke-IT01].

As a comparison, Shannon limit for BPSK is about 0.2 dB.



Density evolution algorithms
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Check node processing:
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Bit node processing:



(2) In check nodes: DIFFERENT
Due to different ways of processing

(1) In bit nodes: SAME
v Only additions involved in both alogrithms.
v The output pdf is the convolution of the input pdf’s.
v Can use FFT to speed up the computation.

Density evolution algorithms for BP and BP-based algorithms
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DE for normalized and offset BP-based algorithms
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v Slightly modify the DE algorithm of the BP-based algorithm.
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Applying DE to Find Best Decoder Parameters 
for Improved BP-Based Algorithms
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Offset 
BP-based
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(dv,dc) rate BP BP-
based

Normalized 
BP-based

Offset BP-
based

α σ β σ

(3,6) 0.5 1.11 1.71 1.25 1.20 0.15 1.22

(4,8) 0.5 1.62 2.50 1.50 1.65 0.175 1.70

(5,10) 0.5 2.04 3.10 1.65 2.14 0.2 2.17

(3,5) 0.4 0.97 1.68 1.25 1.00 0.2 1.03

(4,6) 1/3 1.67 2.89 1.45 1.80 0.25 1.84

(3,4) 0.25 1.00 2.08 1.25 1.11 0.25 1.13

Thresholds (in dB) for various decoding algorithms.
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10-1

Eb/No (dB)
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R

BP-LLR                         
BP-based                       
offset BP-based, =0.15     
normalized BP-based, =1.25
normalized BP-based, =1.40

(504,252) LDPC code, (J,L)=(3,6)



An (8000, 4000) LDPC code, (J,L)=(3,6), 100 iterations.
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norm. BP-based,a=1.25
norm. BP-based,a=1.60
offset BP-based,b=0.15
offset BP-based,b=0.25
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10 -2

10 -1

100

Eb/No (in dB)
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R

BP 200 itr                  

APP-based 200 itr           
Normalized BP-based 200 itr 
Normalized APP-based 200 itr

(273, 191) DSC code with BP, APP-based, normalized BP-
based and normalized APP-based algorithms, a = 2.0.



2 2.5 3 3.5 4 4.5
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Eb/No (in dB)

BE
R

BP 200 itr                  

APP-based 10 itr            
Normalized BP-based 200 itr 
Normalized APP-based 200 itr

(1057, 813) DSC code with BP,  APP-based, normalized BP-
based and normalized APP-based algorithm, a = 4.0.
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10-5

10-4

10-3

10-2

10-1

Eb/No (in dB)

BE
R

BP 1000 itr                  
Normalized APP-based 1000 itr

(4161, 3431) DSC code with BP and normalized APP-
based algorithm, a = 8.0.



Hardware Implementation of BP Algorithm
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v f (z) can be implemented by look-up table (LUT).

v Only need two kinds of operations: LUT and additions.
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Check node implementation of BP algorithm
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Quantization Effects

0-2 q -1-1

…… ……
2 q -1-11 2-1-2

q-bit quantization

Density evolution algorithms for the BP-based and the 
normalized BP-based algorithm can be extended to quantized 
cases.



q Δ β thresholds(dB)

5 0.15 1 1.24

5 0.075 2 1.60

6 0.15 1 1.24

6 0.075 2 1.22

7 0.15 1 1.24

7 0.075 2 1.22

7 0.05 3 1.22

Thresholds for quantized offset BP-based 
decoding with (dv,dc)=(3,6).
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Eb/No (dB)
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LLR BP                         
BP-based                       
offset BP-based, b=0.15     
offset,q=5,D=0.15,b=1 
offset,q=6,D=0.075,b=2

An (8000, 4000) , regular LDPC code, (J,L)=(3,6)



1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-6

10-5

10-4

10
-3

10-2

10-1

100

Eb/No (dB)
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LLR BP, itr=200                                   
BP-based, itr=200                                 
offset BP-based,q=6,D=0.075, b=2, itr=200
BP-Gallager,q=7,D=1/8, itr=200                  
BP-Gallager,q=9,D=1/32, itr=200              

v BP is sensitive to the error introduced by quantization.

(1008, 504) Regular LDPC Code



Comparison of various of decoding algorithms
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Algorithm Performance Complexity
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2-D Normalized Min-Sum decoding

§ Step 1: ( i ) Horizontal Step,  for                       and  each                 :

( ii )Vertical Step, for                       and each                 :
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Density Evolution of 2-D Normalized MS Decoding

§ Density evolution for check nodes

§ Density evolution for bit nodes
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Optimal Normalization Factors

n Normalization factors pair 

n Intractable when                    is large: use 
differential evolution.
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Simulation Results
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Iterative decoding of DG-LDPC codes
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Decoding of non binary LDPC codes:



Combined approaches:



S I S OS I S O

Lapriori (= 0)

Lc y v(1)
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Iterative Decoder

Combined approaches:
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List decoder (RBD)
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Combined decoder
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Potential Improvement


