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Communication Channel:

m (N, K, d,;,) binary linear block code.
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[Linear Codes:

e Alinear code Cis totally define by its KxN generator matrix G

or its (N-K)xN parity check matrjx]Ff iige cant oo cisplayed

mG=c¢
cH' =0




1 0 1
Gkxn = 01 1 :}'H(n_k)x‘q:[l 1 1]

@ Say you send the message m=[0 1]. Create the codeword c

1 01

c=mG = [01] 0 1 1

—=[011]

@ Say the receiver receive ¢=[0 0 1]
© How can the receiver know the codeword he receive is wrong ?
Q Test the receive codeword with the parity check matrix H

¢H" = [0 0 1][1 1 1]*=[1] - error detected
¢H" =[01 1][1 1 1]*=[0] - good




Maximum Likelithood Decoding:

e Find the most likely codeword ¢ based on received
sequence.

e For AWGN, ¢ minimizes the discrepency metric:

L(7, c)— Z‘r‘ (=0)

HDicg

m “Brute-force” decoding: Out of 25 possible
solutions, find the most probable (1.e. the codeword
with minimum discrepency metric).



Coding/Decoding:

e Mathematical problem: design best code (i.e.
best performance for given channel).

e Engineering problem: design best code that can be
implemented.



Majority-logic decoding

Simple and effective way for decoding certain class of block codes,
especially cyclic code.

ldea behind Majority logic decoding

Take an (n, k) cyclic code C with parity-check matrix H
Chose a codeword c in C, and a codeword hy in H then

c-hy=0

Let e be an error pattern, and r a received sequence.

r=c-+te




Majority-logic decoding

Simple and effective way for decoding certain class of block codes,
especially cyclic code.

ldea behind Majority logic decoding

Take an (n, k) cyclic code C with parity-check matrix H
Chose a codeword ¢ in C, and a codeword hy in H then

c-h,=0

Let e be an error pattern, and r a received sequence.

r=c-te
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Aq hy -r €7 +eég +ep +E€14

Az hig - r e3 +eyn +ep +ens

A3z hiz-r e1 +e +ei3 +en

et pd pd e

Ay hig - v e +e +e +eus

Check sums A1. A>. Az and Ag return a 1 = error detected.
The clear majority has detected the error in ey4.
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Cyclic code helps the decoding process.




Ao hi1 - r €3 +e11 +e1p +eu 0

Az hiz - r e +6e +e;3 t+eu 0

Aq hip - r e +es +epn +er3 0
A} hiz - r e;q +e1 +es  +es 0

3 hig -r els +e +enn +er 0

Ay hip -r e13 +e +ep H+ern 0
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LDPC Codes:

First proposed by R.G. Gallager in 1960’s, and ressurected recently
[Gallager-IRE62, MacKay-1T99]

Can achieve near Shannon limit performance with a sophisticated soft
decision iterative decoding algorithm called belief propagation (BP)
or sum-product algorithm [Luby-Mitzenmacher-Shokrollahi-
Spielman:ITO1, Richardson-Urbanke-ITO1, ]



Representations of LDPC Codes

Mx N Parity Check Matrix Tanner Graph
01 01 0 0 :\
1 1.0 0 0 O
H =
1 0 0 0 1 1 ®
001 00 1

Bit (variable) nodes Check nodes

L P



Basic idea:

/ 0 X, +x,+...+x,=0
X, Q

eThe / bits x4,...,x; must satisfy a single parity-check
constraint.

e If any of the / bits x;,...,Xx; is unknown, it can be
reconstructed if the others are known.

e A single parity-check (SPC) code can correct at
Mmost one erasure.



Regular and Irregular LDPC Codes:

<+ Few I’s 1n H.
< An LDPC code is regular if 1ts row and column weights are

constants (say J and L). Otherwise it 1s irregular.

< Irregular LDPC codes have better performance than regular
LDPC codes (and turbo codes) in general [Richardson-
Urbanke-ITO01]

———



Regular (J,L) LDPC codes of length N and dimension K:

< Numberofl’s: JN=M1L

< Rate:
R=K/N
=1-(N-K)/N
>1-M/N

1-J/L



Irregular (J,L) LDPC codes of length N and dimension K:

< Defined by edge degree distributions:

A fraction of edges connected to degree-i

variable (left) nodes.

p,: fraction of edges connected to degree-j
check (right) nodes.

2 A=2.p;=1
: j



< Rate:

(the number of edges from variable (left) nodes equals

the number of edges from check (right) nodes.



Definitions:

+ A cycle of length / in a Tanner graph 1s a path comprising /

edges which closes back on itself.

+ The girth of a Tanner graph is the minimum cycle length

of the graph.

< The shortest possible cycle in a bipartite graph is of
length-4:




porT <+ Cycles of length-6 play an important role in iterative

decoding:
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- Decoding Algorithms

s»Soft-inputs soft-outputs (SISO) algorithm

Soft-inputs: component decoders can receive and
make use of extrinsic information.

Soft-outputs: component decoders can provide
reliability values for each bit, and deliver extrinsic
information for further processing.

s Turbo decoding algorithms include :
* Symbol-by-symbol maximum a posteriori (MAP),
* Max-Log-MAP,
* soft-outputs Viterbi Algorithm (SOVA).
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MAP Algorithm

A, =1

> Pc|»,E)

ceQ, (i)

ST P(e| 3, E)

ceQ (i)

All

paths are considered.



~ Max-Log-MAP Algorithm
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L5 Difference of 2 metrics associated with the best 2 paths.



** A;is the difference between 2 metrics associated with 2 paths.
* No guarantee that both paths are the best,

= A,is often overestimated compared to the Max-Log-MAP.
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One of the best path may be discarded before remerge the

survivor path: suggests bi-directional SOVA.



Decoding performance of Bi-directional SOVA
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Normalized Max-Log-MAP algorithm

R/

s The outputs of Max-Log-MAP algorithm are generally

overestimated compared to those of the MAP algorithm.

Percentages associated with the different cases on the

relationship between L, and L,.

sgn(Ly)=sgn(Ly) | sgn(L,)=sgn(Ly)
E,/N,(dB) | sgn(Ly)=sgn(Ly) L|< || |2 |Ly]
0.8 14.6 74.0 11.4
1.0 13.3 74.7 12.0
1.2 11.8 75.7 12.5
1.5 9.7 77.1 13.2
1.7 8.4 78.2 13.4

L— MAP, L,—- Max-Log-MAP




Performance of Normalized Max-Log-MAP algorithm
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Random Constructions of (J,L) codes:

« Generate an all-0 M x N matrix H.

< Randomly assign L 1’s per row while ensuring

that no more than J 1’s are assigned per column.

< Run a post processing subroutine to delete 4

cycles (random swap).
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Pseudo-Random Constructions of (J,L) codes:

Progressive edge growth (PEG) algorithm [Hu & al. 02]

< Objective: try to maximize girth g = 2(/+2).
<+ Edges are assigned one at a time as follows:
< For each bit-i from 1 to NV:
(1) Assign first edge to a check node among those of lowest degree.

(2) Assign other edges to check nodes which are not among the neighbors of

bit-i up to depth-/ in the current graph.






R,

Random or Pseudo-Random Constructions of
irregular codes:

< The same approaches can be applied once degree distribution

determined.

< Best degree distribution depends on channel considered as well

as decoding algorithm.

< Daifferential evolution can be applied to determine the best

distribution corresponding to a given objective function.
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Parallel Differential Optimization:

. Step 1: mitialization
- Step 2: mutation and test

- Step 3: compare and update.

. Step 4: stopping test
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Parallel Differential Optimization

‘l DHlD
f1 f4

f2 13
t,, =f,+rx(f +f)

. !

next iteration




Algebraic construction of LDPC codes:

e LDPC codes can be constructed based on the points and

lines of finite geometries.

elet G be a finite geometry with n points,
{P1.P2, -+ Paf.and Jlines, { £y, Lo, - -+, L;}. which

has the following fundamental structural properties:

(1) Each line consists of p points.

(2) Any two points are connected by one and only one

line.

(3) Each point lies on ~ lines, 1.e., each point 1s inter-

sected by ~ lines.

(3) Two lines are either parallel (1.e., they contain no
common point) or intersect at one and only one

point.



e Let £ be aline in G. Define a vector based on the points

on L as follows:

ve = (01,09, -+ L vp)

where

1. 1f v; corresponds to a point on L.

0. otherwise.

This vector v, 1s called the incidence vector of L.
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o H'C1 'is a .J x n matrix whose rows are the incidence vec-
tors of the ./ lines 1n the finite geometry G and whose
columns correspond to the n points in G. The matrix
H'C1 has the following properties:

(1) each row has weight p:
(2) each column has weight ~:

(3) any two columns have at most one “1-component”

in common. ie. AN =0or I:

(4) any two rows have at most one “1” in common.
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e The null space of Hcl gives a LDPC code which 1s

called a type-I geometry-G LDPC code, denote C'g".

. . : — ~
e It follows from the structural properties of H that for
. - - .|r]_‘:| . I,rltl
every code bit position of C,’, there are v rows n H,
which are orthogonal on 1t. Therefore. the minimum

- ~~(1) - 4
distance d,,;, of C’ 1s at least v + 1. 1.e..

Amin > Sian 1.

e There are two well known families of finite geometries:
Euclidean geometries over finite fields and projective

geometries over finite fields.



e Let EG(m.2%) denote the m-dimensional Euclidean ge

ometry over GF(2%). This geometry consists of
2Mms points

and

.2(111—1)5(27715_ 1)
251

lines.
e Each line consists of
2% points

e For each point p in EG(m, 2%). there are

oms_|
25—-1

lines

that intersect at p.



e L PN

o Let Hgfﬁ be a matrix whose rows are the imcidence vec-
tors of all the lines in EG(m. 2°) that do not pass through
the origin and the columns correspond to the 2 — 1
non-origin points of EG(m. 2%). Then HE{E consists of

2% — 1 columns and 2" =1$(2" —1)/(2° — 1) rows.

5

(1} : :
H/, has the following properties:

p = 2%
oms __
s 1

A = Oorl.
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e For m = 2, the type-I 2-dimensional EG-LDPC code

has the following parameters:

Length n=2%_1,
Number of parity bits n — &k = 3% — 1,
Dimension k= 2% — 3%,

Minimum distance  d,,;, = 29 + 1.

e A list of type-I two-dimensional EG-LDPC codes

s n k dpin P ol

2 15 7 5 4 4

3 63 37 9 8 8

4 255 175 17 16 16
5 1023 781 33 32 32
6 4095 3367 65 64 64
7 16383 14197 129 128 128




LDPC codes can be constructed based on the points
and lines of the m-dimensional projective geometry
PG(m.2*) over GF(2°). Type-I PG-LDPC codes are
also cyclic. For m = 2, the type-I 2-dimensional PG-

LDPC code has the following parameters:

Length n=2%4+2%41,
Number of parity bits n — k& = 3°+ 1,
Dimension k=22 425 — 3%,

Minimum distance  d,,,;, = 2° + 2,

e A list of type-I 2-dimensional PG-LDPC codes

s n ke Aonin P 7
2 21 11 6 5 5

3 73 45 10 9

4 273 191 18 17 17
5 1057 813 34 33 33
6 4161 3431 66 65 65
7 16513 14326 130 129 129
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eoizziinizi| - Gallager codey=4

Ermar Rate

0N
=)
[m=]

?ﬁ.

1D_EEEEEEEEEEEEE:EEEEEEEEEEEE:EEEEEEEEEEEEE:EEEEifffffiﬁ‘gffffffiﬂ.f
R I N R T N T
4

a0 1 2 3

Bit-error probabilities of the EESS. 175) EG-LDPC code,
(273.191) PG-LDPC code and two computed searched
(273.191) Gallager codes with IDBP.



Emor Rate

.| -=— PG-LDPC
_= EG-LDPC
—4 Gallager code v=3
:::| - Gallager code y=4

e e e e me e e e e e e e I N LR

E,/N, (dB)
Bit-error probabilities of the (1023, 781) EG-LDPC code,
(1057, 813) PG-LDPC code and two computed searched (1057,
813) Gallager codes with IDBP.



Error Rate

|

1 — — Uncoded BPSK |7
1 —&— Max ItNum 1

‘| 8- Max ItNum 2
—— Max ItNum 5
—&— Max ItNum 10
‘] —— Max ItNum 20
1 —&— Max ItNum 100

a1 a1l

E/N, (dB)
Convergence of the IDBP algorithm for the (4095,3367) type-I
EG-LDPC code.



e Finite geometry LDPC codes can be shortened to obtain
good LDPC codes. This 1s achieved by deleting prop-

erly selected columns from their parity check matrix.



Quasi-Cyclic LDPC codes:

CI0) H0) .- 1(0)
iy 1"[_.”.] H{pia) "[{PI:L )
CH(0) Hpy_qya) oo Iproip-1)]

with [(p;;) pxp circulant permutation matrix with
1 at column-(» + p; ;) mod-p for row-r.
(J,L) regular LDPC code of length N = pL.



e R

m Example: J=2;L=3;,p=25.

100001000010000
010000100001000
001000010000100
000100001000010
H = 000010000100001
100000010000010
010000001000001
0010000001 10000
000101000001000
00001/0100000100

=000
023
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m A (J L) quasi cyclic (QC) LDPC code 1s totally
defined by (J-1)(L-1) integers.

m The quasi cyclic structure allows simple encoding
based on shift registers.

m Girth at most 12 and minimum distance at most
(J+1)!



010000100
0004606060~ 0
D0001000D 1

AYYAYR | AYYAYYAYY AWYAY
000010

J U 1

0007100000 1
001000000110000
000101000001000
000010100000100




Rate-0.55 Length-4100 Codes:
0P ®
I A N AN Y SSTs»“— .
N
z | |
..\ N\ T ]
8‘8 2 QC rand (4104,2287) (8,18), g=6 | |
"~ | * QC rand (4104,2283) (4.9), g=6 | |
-4 |o: QC rand (4104,2263) (4.9), g=8 R R RERR RRIEL UERR R REEEE CRER .
+: Gallager rénd (4104,2281) (4,9), g=6
x: Pless (4096,2238) (16,16), g=8
SE o e S W -
B L L | L | !
05 1 15 2 25 3 35 4

SNR (in dB)



(WER)
&

Iog10

SNR (in dB)

i * QC rand (1053,812) (3,13), g=é
(o} QC rand (i053,812) %(3,13), g=é
- >:QCrand (1062,829) (4,18), g=6 TR AT xRN
- Gallager rand (1057,813) (3,12-13), g=6 \'\.
+: Gallager rénd (1 057,3813) (4,1?-18), g=6 \X
| X DSC (1057813 (33.33), 06 S - N
| ; ; .‘ .‘ ; ; ; ;
2 2.2 24 2.6 2.8 3 3.2 3.4 3.6 3.8
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Lifted quasi-cyclic LDPC codes:

m Start with (J,L) M, x N, small H, matrix of
girth g at least 6.
m Replace every 1 by N, X N, circulant matrix.

m We obtain a (J,L) LDPC code with:

lengthNZN] NZ
co-dimension at most M; N,

girth at least g.



-type LDPC codes

||-. |. LN
B SORAS
SN0 AN

linear time encodable.

|
RO T 455 O TN
N £ L O GRS - £ 4% AL N
SN0 NN = SN0 N .



LDPC codes over GF(g):

m InH, h, e GF(qg);i.e. each edge is labeled

>y

by a symbol of GF(g) - ~ rotation -
m Check sum-i:

Zhl.jxj =0
j

hl.]. e GF(q), X; € GF(qg)



Rate=1/2

3| =% binary irreguiar LDPC
-8- regular LOPC GF(64)
—%— regular LDOPC GF(238)
- = SP50 lower bound

0 I ! I ! ‘) 1 I 1 I I
05 1 1.5 2 2.5 3 35 < 25 5 55

E,/Ng (in dB)



Performance Comparison, K=16 bytes, Rate=2/
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"7 == regular LDPC GF(258)
- = SP52 lower bound
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Generalized LDPC codes:

A standard LDPC code 1s characterized by the random connection

between variable nodes and check nodes.

Repetition Codes SPC Codes

Variable Check
Nodes Nodes



Generalized LDPC codes are obtained by
replacing (dc, dc-1) SPC with other (dc, k)
subcodes. [Tanner—I1T81]

Repetition Codes

(dcla kcl)

(dcb kc2)

M (chach)

Variable Check
Nodes Nodes

Subcodes
NOT confined
to SPC codes
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doubly-GLDPC codes

k o
v2 : (dvz, kvz) (dcb kCl) Transmitted bit

Super check node

k VN
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Construction steps:

Step 1: row expansion

In every row of parity check matrix, each “1” is replaced
with a subcolumn from the subcode parity check matrix of
the corresponding super check node based on a one-to-one
correspondence and each “0” is replaced with a zero subcolumn.

U

100011
111110000000 Subcode H,, .. =| 0101011
00000001111111 0011[1o|1L

10110001011010
1101000000000
0110010000000
]

00101100111001
11010011000110

01001110100101
0001110000000

[ ——



Construction st

Step 2: column expansion

In every column of parity
check matrix each “1” in the
same subcolumn is replaced
with the same subrow in the
transposed generator matrix of
the corresponding super variable
node based on a one-to-one
correspondence and each “0” in
a subcolumn 1s replaced with a
zero subrow.

0101100111001 Gsz
1010011000110

1
0
1
01001110100101
0
1

1111110000000 Sub
0000001111111 G —
0110001011010 !

code

110j
011

column
expansion

expansion

(— o O — O — |

10

11

o o —lo ool col— — ol o o= — —|

01




Construction of DGLDPC code C!

Target: obtain good threshold
C 1s a rate-7/15 length-7650 code.

Super variable nodes: (6,1) repetition code, (6,2) code with generator
111000

matrix [111100], (6,4) code with generator matrix |19 (6,5) SPC code.

000111
Super check node: (15,11) Hamming code

Variable node distribution is 3 =0.425 A, =0.075, A, =0.075
and 4, =0.425 -

Threshold 1s 0.3dB, only 0.26dB away from capacity.
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The (2, 15) GLDPC code, which is used to compare with Ci, has the same kind
of check node as Ci, i.e., (15,11) Hamming codes. The simulation result of the
(2, 15) GLDPC code is obtained from [Lentmaier et al.-CL99].

1

10_ 3 13
—o— Doubly GLDPC |3
+— (2,15) GLDPC |
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AN \\
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10 - \\
N N
\
R \
\ N\
10° \\
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N\
\
bo)
10° [ [ [ [ - - -
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Eb/No (dB)



Construction of DGLDPC code C2

Target: lower error floor

(> 1s a rate-1/2 length-1536 code.

Super variable nodes: the (4,1) repetition code and the (4,3) SPC code.
Super check node: (15,11) Hamming code

Threshold is 0.77dB.



Simulation Result of C2

The rate-1/2 length-1504 (2,4)-LDPC code over GF(16) is used to
compare with C2. The simulation result of this (2,4)-LDPC code is
obtained from [Poulliat ez a/.-ISTC 2006].

WER

10°

10

10

10

10

10

10

10”7
0

—6— Doubly GLDPC

(2,4)-LDPC code over GF(16)

1.5

Eb/No (dB)

3.5
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Random codes performance comparison on BEC
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General concept:

< Each bit/check node 1s a processor, receiving messages
from neighbor nodes, and sending back messages after

processing.

_

X

Main goal: avoid direct correlation assuming incoming messages

are independent of each other.



l-¢
0 0
E
(7
o .
1 1
l-¢

< MLD: Find information set (K independent positions) without

erasures and perform Gaussian elimination: O(N 3).

< Iterative decoding: Propagate information available at each node.
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Processing in bit nodes:

<+ Ifnode of degree-J, J+1 copies of bit available:
J estimates from check nodes.

1 estimate from channel.

X/

+ Define  x, = Prob(message ="7"at bit-node for it -/)

¥, = Prob(message ="?"at check node for it - /)

X/

< Transmitted information still erasure if all other incoming message

and 1nitial estimate from channel are erasures:

B J-1
X =€)
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Processing 1n check nodes:

+ If node of degree-L, L incoming bits sum to O.

<+ Transmitted information still erasure 1f at least

one Incoming message 1s an erasure:

Vi :1_(1_x1)L_1



Combining the two equations:
X =¢[1-(1-x )

% Threshold: largest value of & such that

X; 0 ““with / large enough™.

(X4 x > 0 possible)



For 1rregular codes:

X, =& Al=p(-x,)]

< Capacity achieving codes of rate R=1- & have
been found for the BEC (ex: heavy tail Poisson

distribution)



Finite length 1ssues:

Stopping set: subset V of variable nodes such that all neighbors are

connected to V at least twice.

AR

These are poor configurations as iterative decoding stuck even if MLD

possibly correct



< MLD: NP_hard problem.

< Iterative decoding: Propagate information available at each node.
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Gallager algorithm-A:

< At iteration-(i+1), send to check node 1initial value received from channel,

unless (J-1) other check values disagree with it.
» Define P = Prob(check sum returns an error for it - i)

<+ Ways to make an error:

(1) bit received in error and less than J-1 check sums indicate otherwise.
po (1=(1=PV)"™)

(2) bit received correctly and all J-1 check sums indicate otherwise.

(I-p,) P!

)J—l



“Puisl

< It follows:

Piy =Py I=(1=P?Y )+ (1= p,) PO

< Check sums of weight L indicates an error if L-1 other bits

contain odd number of errors:
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< A necessary and sufficient condition for p;.; <p;:

)J—l

Po (I_P(i))J_l >(1_po)P(i

< This equation can be used to determine the largest value of p, such that

pi1 < p; for ilarge enough.

< To this end 1t assumes the incoming messages are independent. On a

Tanner graph of girth g, it is true for Lg —ZJ iterations.
4

(~g/2 branches to reach 2 opposite nodes on a cycle and 2 branches per

iteration).



Gallager algorithm-B:

< At 1teration-(i+1), send to check node initial value
received from channel, unless 7(i) other check

values disagree with it.
1(7) 1s a threshold associated with 1teration-i.

< Using same reasoning as for alg-A, we obtain:

J—1

J—1 ; T —1-1
Pixn = Po — Po Z ( / j(l_P())lP()

=T (i)

<« (/1 (i)! ()N J —1—1
+U-p) >, |7 | P A=PY)

I=T (i)
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< The optimum theoretical threshold 1s the smallest 7' that

satisfies:

N\ 21 —J+1
1-pPY

l_p() <

2 P(l')

<+ Alg-A 1s equivalent to Alg-B with 7(7) = J-1 (hence alg-B
always better).

< In practice, 7(7) adjusted from simulation.



Iterative Decoding on AWGN:

%y =Xx+n with x; = (-1)“ and n, = N(0,Ny/2)

< Define: N(m) = {n h == 1}
M(n)z{m:hmn :1}

For (J,L) regular code: |N(m)| = L; |[M(n)| = J.

Define:
Po =Py, |c,=0)= (7z-NO)—1/2e—(y,-—l)z/zvO

P = P(yz |Ci :1) = (ﬂNO)_l/ze_(yi+1)2/N0



r,, . - Probability that bit - n is x based on other bits »'
in N(m)\ n which have probabilities g, ..

q,,, - Probability that bit - n1s x based on f,” and the other
probabilitiess ., for bit-nin M (n)\ m.
/.7 : Probability that bit-#1s x based y, .
£, =0 (po+ 1) Sy =0 Do+ D)

g, : Probability that bit-n1s x based on f;” and the other
probabilitiess 7;, , for bit-nin M (n).
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Belief Propagation (BP) Algorithm:

< BP algorithm 1s an iterative decoding algorithm [Gallager-
IRE62, MacKay-IT99] .

» Messages can be probabilities, and more conveniently, log-
likelihood ratios (LLR’s) for binary LDPC codes.
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Initialization : q,, , = f.; q}n,n = f.

Horizontal step :

\
rn?,n: 1/2 1+ H(qmn—qmn)
n'eN(m)\n )
/ )
rn{z,n — 1/2 1 o H (q;(q)fz,n' o ern,n')
\_ n'eN(m)\n J

Vertical step :

o 0 H 0
qm,n I amn fn rm',n

m'eM (n)\m

1 1 H 1
qm,n _ amn fn rm',n

m'eM (n)\m

. .0 1
Xy Gt Do =1.



P

Decision :

0 _ 0 0
qn T qm,n rm,n

1 1 1
qn T Qm,n rm,n

Stopping criterion : Stop as soon as hard decision 1s

a codeword.

Decoding 1n log - domain more stable numerically.



(ro’r1)

/ 0 = qlo q§+q11 q; ~ (0+0 or 1+1)
r'=¢q g +q g ~ (0+1 or 1+0)

(@’,q)

(43,95)

1/2(1+(g° - 4!) (g2~ 42)
=1/2(1+4/¢} + q\9) — 4’5 — 4145
=12(1+¢°2 +4/qs —¢" (1-¢9)—q! (1-g}))
:1/2(1+2q1°q§+2%16]§—%0 _%1)
=4 9, + 4 9
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Processing in check nodes:
Principles:

Incoming messages + constraints = outgoing messages

¥~ Check Node
m

L =2 tanhl( I1 tanh(z, ,/ 2)j

n'eN(m)\n

Bit Nodes ™«
N(m)



for hard decision

’v’: éheck Nodes

X M(n)
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BP-Based Algorithm (min-sum)

—simplification in check node processing

<. Check Node L =2tanh1[ [ [ tanh(z,,./ 2)}

'eN(m)\
m n'eN(m)\n

~ Hsgn(zmn,)- min ‘zmn,

0N (m)\n n'eN(m)\n

Bit Nodes " «
N(m)

<+ Low complexity;
< Independent of channel characteristics for AWGN channels;

< Degradation in performance.



APP Algorithm

—simplification in bit node processing

Check Nodes
M(n)
< Z,is not only for hard decision, but also as a substitution for Z,,,.

< Lower computational complexity and storage requirement.

< Introducing correlation in the iterative decoding process.

APP-Based Algorithm —simpilification in both nodes
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Performance of BP and Its Simplified Versions

(1008, 504) regular LDPC Code

—— LLR BP, itr=200
-©- BP-based, itr=200
4 -6- APP, itr=20
—4— APP-based, itr=20

BER
S

1 15 2 2.5 3 3.5 4
Eb/No (dB)



BER (solid) / WER (dashed)

10

(8000, 4000) Regular LDPC Code

-5 threshold with
BP decoding

1 1.2

1.4

threshold with
BP-based decoding

16 1.8 2
Eb/No (dB)

—— LLR BP, itr=100
( =©~ BP-based, itr=100

-6— APP, itr=100
' APP-based, itr=30

2.2 2.4 2.6 2.8



BER

10°

10

(273, 191) DSC Code

—+— LLR BP, itr=500
-©- BP-based, itr=10
-6— APP, itr=500

—4— APP-based, itr=10

2.5 3 3.5
Eb/No (dB)

4.5



(1057, 813) DSC Code

10

10'G—

o
L
28]

—— LLR BP, itr=500
-©- BP-based, itr=10
-6- APP, itr=500

—o— APP-based, itr=10

2 2.5 3 3.5 4 4.5
Eb/No (dB)




Improvement of the BP-based algorithm

check node processing in different algorithms

Z,
L — Dc(°)
ch—]
BP:
BP-based:
Ll =3 tanh_l (H tanh(Zl/Z)j L2 — Hsgn(zi) . min Zi

Two statements hold:

1. sgn(L;)=sgn(L,);
2. | L) <|L,l.



Py

Two improvements of the check node processing

Normalized BP-based algorithm:

Divide L, by a normalization factor a greater than 1,

L, L,/a .
Offset BP-based algorithm:
Decreasing |L, | by a offset value 3,

L, | <= max(|Z, |- B, 0) .

% Decoder parameters, a’s or 3's, need to be optimized.

,_,‘.
Tk



APP-based algorithm + normalization in check nodes
= normalized APP-based algorithm.
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Optimizing Parameters by Density Evolution

Density evolution (DE) is a powerful tool to analyze message-
passing algorithms of LDPC codes [Richardson-ITO1]

Assumptions:
(1) symmetric channels (BSC, AWGN, ...... );
(2) decoder symmetry;
(3) all-0 sequences transmitted;
(4) infinite code length --- loop free.

Basic idea: numerically derive the probability density functions (pdf)
of the messages from one iteration to another, based on decoding

algorithms, and then determine the bit error rate.
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m Threshold phenomenon: for an ensemble of code, a certain
kind of channels and a decoding algorithm, there exits a
threshold for a channel parameter, such that the BER
approaches to 0 with a channel parameter better than this
threshold, and the BER stays away from zero with a worse

channel parameter.
m Example:

For AWGN channel with variance o2, BPSK transmission,
BP as decoding algorithm, and (J,L) = (3, 6)

— o,=0.880 (1.11 dB) [Richardson-Urbanke-ITO01].

As a comparison, Shannon limit for BPSK 1s about 0.2 dB.



Density evolution algorithms

Check node processing: Bit node processing:

O.()

.




Density evolution algorithms for BP and BP-based algorithms

(1) In bit nodes: SAME

- Only additions involved in both alogrithms.

» The output pdf is the convolution of the input pdf’s.
» Can use FFT to speed up the computation.

(2) In check nodes: DIFFERENT
Due to different ways of processing

Bp: L=2tanh” (H tanh(Zi/Z)j

BP-based: L= Hsgn(zi) -ml_in 1Z,|
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DE for normahzed and Offset BP- based algorlthms

< Slightly modify the DE algorithm of the BP-based algorithm.

+ Normalized BP-based +Offset BP-based
L « Lla L] « max(|L|—ﬁ, 0)
0,() < a0, (a1 O, () <« u)o,(U+PB)+u(=HO,(—P)
(1) O (I)I_BB O, (dl

0.(D)

normalized BP-based

BP-based

BP-based offset BP-based

~~ \
1
=
==
~~
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Applying DE to Find Best Decoder Parameters
for Improved BP-Based Algorithms

25
2
Normalized =
o)
BP-based =
%
o
_'.{_:'
1.5
M -©- (dv,dc)=(3,6)
- (dV,dC)=(4!8)
-4~ (dv,dc)=(5,10)
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

a



Offset
BP-based

(dB)

threshold

2.8 /
2.6\ /ﬁ
</
2.2 /
2[\
1.8 \q\\E
E\E———E
1.6 /0
9 o
/ -©- (dv,dc)=(3,6)

1.2 -8 (dv,dc)=(4,8) |

A~ (dv,dc)=(5,10)
3.05 0.1 0.15 0.2 0.25 o.rs 0.55
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Thresholds (in dB) for various decoding algorithms.

Normalized Offset BP-
(dud) | rate BP b]i:’e-d (]jP—base: B based :
(3,6) | 0.5 .11 | 1.71 | 1.25 | 1.20 | 0.15 | 1.22
4,8) | 0.5 1.62 | 250 | 1.50 | 1.65 | 0.175 | 1.70
(5,10) | 0.5 2.04 | 3.10 | 1.65 | 2.14 0.2 2.17
(3,5 | 04 097 | 1.68 | 1.25 | 1.00 0.2 1.03
(4,6) 1/3 1.67 | 289 | 1.45 | 1.80 | 0.25 | 1.84
34| 025 | 1.00 | 2.08 | 1.25 | 1.11 | 0.25 | 1.13




BER

10,

10

10

10

10

10

—— BP-LLR

-o— BP-based

—7- offset BP-based, =0.15

—4— hormalized BP-based, =1.25

-8~ normalized BP-based, =1.40

I I
L L

1.5 2
Eb/No (dB)

2.5

3.5



An (8000, 4000) LDPC code, (J,L)=(3,6), 100 iterations.

» —— LLR BP
10 -©- BP-based
—— norm. BP-basedp=1.25
-6— norm. BP-basedp=1.60
» -7 Offset BP-basedp=0.15
10 offset BP-basedf=0.25
-3
E 10
m
10"
10°
1 1.2 1.4 1.6 1.8 2 2.2

Eb/No (dB)

"; T [ SR — T -
AL g _lﬁ_s_& s
e A, A o
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(273, 191) DSC code with BP, APP-based, normalized BP-
based and normalized APP-based algorithms, a = 2.0.

10°

10

107

10°
o
0

10"

0° —+— BP 200 itr

—3- APP-based 200 itr
] —-©— Normalized BP-based 200 itr
10 —¢— Normalized APP-based 200 itr
107
1 15 2 25 3 3.5 4 45

Eb/No (in dB)
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(1057, 813) DSC code with BP, APP-based, normalized BP-
based and normalized APP-based algorithm, a = 4.0.

BER

BP 200 itr

10 APP-based 10 itr
Normalized BP-based 200 itr
Normalized APP-based 200 itr

2 2.5 3 3.5 4 4.5
Eb/No (in dB)
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(4161, 3431) DSC code with BP and normalized APP-

10

based algorithm, o = 8.0.

10

10

10

—+— BP 1000 itr
N Normalized APP-based 1000 itr

10

3 3.2 3.4
Eb/No (in dB)

3.6

3.8
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L=2tanh" (H tanh(Z, / 2)}
[Tsenlz) 1 £ 1(2)

0 : L : : L n .
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

* f(z) can be implemented by look-up table (LUT).

* Only need two kinds of operations: LUT and additions.



Check node implementation of BP algorithm

| ) | f(.) f(o) ® Ll
Z,,Z,,Z, )1 | * | J10 Adder 1) L
: : Array ; :
de
M f (*) f (*)
sgn(*) :ﬁg




Check node implementation of BP-based algorithm and improved

versions

(Zlazzs"'ch)

Comp.

Array

XOR

Array




- Quantization Effects

g-bit quantization

||
091 2-101 2 5 a4

Density evolution algorithms for the BP-based and the
normalized BP-based algorithm can be extended to quantized
cases.
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Thresholds for quantized offset BP-based
decoding with (dv,dc)=(3,6).

q A B thresholds(dB)
5 0.15 1 1.24
5 0.075 2 1.60
6 0.15 1 1.24
6 0.075 2 1.22
7 0.15 1 1.24
7 0.075 2 1.22
7 0.05 3 1.22
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An (8000, 4000) , regular LDPC code, (J,L)=(3,6)

—+— LLR BP

10 -©~ BP-based
-7 offset BP-based, 3=0.15
-6 offset,q=5,A=0.15, 3=1

2 -6— offset,q=6,A=0.075,3=2
10

'
w

10

'
N

10

'
o

10

1 1.2 1.4 1.6 1.8 2 2.2
Eb/No (dB)
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(1008, 504) Regular LDPC Code

—+— LLR BP, itr=200
-6~ BP-based, itr=200

10-1 -~ offset BP-based,q=6A=0.075, =2, itr=200
—o— BP-Gallager,g=7A=1/8, itr=200
-~ BP-Gallager,q=9A=1/32, itr=200

BER
o

1 12 14 16 18 2 22 24 26 28 3
E,/N, (dB)

*» BP is sensitive to the error introduced by quantization.



Comparison of various of decoding algorithms

Algorithm

BP
Min-sum
Normalized MS

Normalized MS

()

Performance

OGN JON-XO

Complexity

. regular &
irregular

} regular

} irregular

} irregular



2-D Normalized Min-Sum decoding

Step 1: (1) Horizontal Step, for o0<n<n-1 and each memn)

U =y > | |sgn5:")x min [V |

n'eN(m)\n neN (m)\n

(11 )Vertical Step, for 0<zn<nN-1 andeach meM@®) :

(i) _ (i)
an o Uch,n + ﬁdv(n) X ZUm'n

m'eM (n)\m

I/n(i) + Ide(n) X ZU(Z)

meM (n)
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Density Evolution of 2-D Normalized MS Decoding

= Density evolution for check nodes

(z)(u)(_f , (z)[ ]

Jla

= Density evolution for bit nodes

vmax

(’)(V)<— Z—F (F(fUh (F(f(y)))J ,B
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Optimal Normalization Factors

m Normalization factors pair f =(a,p)

o={a,,,....,0, }

B:{ﬂ19ﬂ29”‘918v h

m [ntractable when v, ¢, ...
differential evolution.

weight

1s large: use



)

NS

10

10

10

WER

10

— g Standard BP
—%—— 2-D Normalized Min-Sum
—+—— Conventional Min-Sum

—o—— Min-Sum

-4
10 L L '3
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Nb/No(dB)
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Iterative decoding of DG-LDPC codes

For super variable node

ynl

variable
node n

yn,k

vn

N un,dvn
(i) s
l

Vm







P(z,.,, =0V,

U = log
Mg >Sm _ (l 1)
o P(Zm,q 1| m[q])
d
G i-1
(l) . Zy,- mq_O] 19]'¢q
U, n s = log o

i—1

Z,Zy =1 j=1,j#q



For super check node

(i)
. z/lnmlﬂsml
(i xS

Vm,l N
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Combined ;appfbéchés:

Lapriori (: O) Lext
m ———~| P[] |[— N
SIS0 SISO
c y ‘ v(l) v(2)
V(l) V(2) CMLD

[terative Decoder
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Lapriori

=Lcly|)

Chbest

v

Ley

List decoder (RBD)



Lapriori(: O

) Lex1
— L ep | — =
SISO SISO
Lcy R
RBD- c(1) RBD- c2)
c(2)
c(1)
y ‘

Combined decoder



Potential Improvement

------ cmLp = ¢(4)



