
Part-I: A Brief Introduction to
Channel Coding

Marc Fossorier
Department of Electrical Engineering

University of Hawaii

Communication Channel:

n (N, K, dmin) binary linear block code.

Source
Coder

Channel
Coder

Demodulator

Channel

Modulator§©

Channel
Decoder

Source
Decoder

Noise

001…

001… 001…

001…001…

c

r

m

m’

Linear Codes:

The picture can't be displayed.

l A linear code C is totally define by its KxN generator matrix G
or its (N-K)xN parity check matrix H via:

0 c
c m
=

=
TH
G

Example:

The picture can't be displayed.

n “Brute-force” decoding: Out of 2K possible
solutions, find the most probable (i.e. the codeword
with minimum discrepency metric).

Maximum Likelihood Decoding:

å
¹

³=






crHD
rcrL

:
)0(),(

l Find the most likely codeword c based on received
sequence.

l For AWGN, c minimizes the discrepency metric:

Coding/Decoding:

l Mathematical problem: design best code (i.e.
best performance for given channel).

l Engineering problem: design best code that can be
implemented.

Part-II: Introduction to LDPC Codes

Marc Fossorier
Department of Electrical Engineering

University of Hawaii

LDPC Codes:

v First proposed by R.G. Gallager in 1960’s, and ressurected recently
[Gallager-IRE62, MacKay-IT99] .

v Can achieve near Shannon limit performance with a sophisticated soft
decision iterative decoding algorithm called belief propagation (BP)
or sum-product algorithm [Luby-Mitzenmacher-Shokrollahi-
Spielman:IT01, Richardson-Urbanke-IT01,] .

M x N Parity Check Matrix Tanner Graph

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

=

100100
110001
000011
001010

H

Representations of LDPC Codes

Bit (variable) nodes Check nodes

Basic idea:

1x

2x

lx

0 0...21 =+++ lxxx

•The l bits x1,…,xl must satisfy a single parity-check
constraint.

• If any of the l bits x1,…,xl is unknown, it can be
reconstructed if the others are known.

• A single parity-check (SPC) code can correct at
most one erasure.

v Few 1’s in H.

v An LDPC code is regular if its row and column weights are
constants (say J and L). Otherwise it is irregular.

v Irregular LDPC codes have better performance than regular
LDPC codes (and turbo codes) in general [Richardson-
Urbanke-IT01] .

Regular and Irregular LDPC Codes:

v Number of 1’s: J N = M L

v Rate:

Regular (J,L) LDPC codes of length N and dimension K:

LJ
NM

NKN
NKR

/1
/1

/)(1
/

-=
-³

--=
=

v Defined by edge degree distributions:

fraction of edges connected to degree-i
variable (left) nodes.

fraction of edges connected to degree-j
check (right) nodes.

:il

Irregular (J,L) LDPC codes of length N and dimension K:

:jr

1==åå
j

j
i

i rl

v Rate:

å
å

-=

-³

j
j

i
i

j

i
NMR

/

/
1

/1

r

l

(the number of edges from variable (left) nodes equals

the number of edges from check (right) nodes.

v A cycle of length l in a Tanner graph is a path comprising l
edges which closes back on itself.

v The girth of a Tanner graph is the minimum cycle length
of the graph.

v The shortest possible cycle in a bipartite graph is of
length-4:

Definitions:

v Cycles of length-6 play an important role in iterative
decoding:

Part-III: Introduction to Turbo Codes

Marc Fossorier
Department of Electrical Engineering

University of Hawaii

- Encoder structure

D D+

+

D D+

+

u

C1

C2

interleaver

xs

xp,1

xp,2

- Decoder structure

DEC1

DEC2

Extrinsic info.

Extrinsic info.

ys

yp,1

yp,2

1û

2û

1 2 3

DEC1 DEC2
ys
yp,1
yp,2

E

û

- Decoding Algorithms

vSoft-inputs soft-outputs (SISO) algorithm

Soft-inputs: component decoders can receive and
make use of extrinsic information.

Soft-outputs: component decoders can provide
reliability values for each bit, and deliver extrinsic
information for further processing.

vTurbo decoding algorithms include :

* Symbol-by-symbol maximum a posteriori (MAP),

* Max-Log-MAP,

* soft-outputs Viterbi Algorithm (SOVA).

MAP Algorithm

å
å

WÎ

WÎ=L

)(

)(

0

1

),|(

),|(
ln

ic

ic
i EycP

EycP
All paths are considered.

i

Max-Log-MAP Algorithm

ui=0

ui=1

),|(max

),|(max
ln

)(

)(

0

1

EycP

EycP

ic

ic
i

WÎ

WÎ=L

Difference of 2 metrics associated with the best 2 paths.

i

Soft-output Viterbi Algorithm (SOVA)

ui=0

ui=1

v Li is the difference between 2 metrics associated with 2 paths.

v No guarantee that both paths are the best,

Þ Li is often overestimated compared to the Max-Log-MAP.

i

ui=0Path-1

ui=1
Path-3

ui=0

Path-2

Possible path selection in SOVA

One of the best path may be discarded before remerge the

survivor path: suggests bi-directional SOVA.

i

Decoding performance of Bi-directional SOVA

1 1.5 2 2.5
10-6

10-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE
R

SOVA
Bi-SOVA
Max-Log-MAP
MAP

N=1024

0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

BE
R

SOVA
Bi-SOVA
Max-Log-MAP
MAP

N=16384

Normalized Max-Log-MAP algorithm
v The outputs of Max-Log-MAP algorithm are generally

overestimated compared to those of the MAP algorithm.

Eb/No (dB) sgn(L1)¹sgn(L2)
sgn(L1)= sgn(L2) sgn(L1)= sgn(L2)

|L1|< |L2| |L1|³ |L2|

0.8 14.6 74.0 11.4
1.0 13.3 74.7 12.0
1.2 11.8 75.7 12.5
1.5 9.7 77.1 13.2
1.7 8.4 78.2 13.4

Percentages associated with the different cases on the
relationship between L1 and L2.

L1– MAP, L2 – Max-Log-MAP

0.6 0.8 1 1.2 1.4 1.6 1.8
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No(dB)

BE
R

MAP
Max-Log-MAP
normalized MLM

N=8192

Performance of Normalized Max-Log-MAP algorithm

Part-IV: Constructions of LDPC Codes

Marc Fossorier
Department of Electrical Engineering

University of Hawaii

Random Constructions of (J,L) codes:

v Generate an all-0 M x N matrix H.

v Randomly assign L 1’s per row while ensuring
that no more than J 1’s are assigned per column.

v Run a post processing subroutine to delete 4
cycles (random swap).

Pseudo-Random Constructions of (J,L) codes:

Progressive edge growth (PEG) algorithm [Hu & al. 02]

v Objective: try to maximize girth g = 2(l+2).

v Edges are assigned one at a time as follows:

v For each bit-i from 1 to N:

(1) Assign first edge to a check node among those of lowest degree.

(2) Assign other edges to check nodes which are not among the neighbors of
bit-i up to depth-l in the current graph.

depth-0

depth-1

depth-l

bit-i

Random or Pseudo-Random Constructions of
irregular codes:

v The same approaches can be applied once degree distribution
determined.

v Best degree distribution depends on channel considered as well
as decoding algorithm.

v Differential evolution can be applied to determine the best
distribution corresponding to a given objective function.

Parallel Differential Optimization:

§ Step 1: initialization

§ Step 2: mutation and test
§ Step 3: compare and update.
§ Step 4: stopping test

Parallel Differential Optimization

f1 f2 f3 f4

)(ji4 fff +´+= r

f1,t f2,t f3,t f4,t

f1,t f2,t f3 f4,t

next iteration

tk ,f

Algebraic construction of LDPC codes:

Quasi-Cyclic LDPC codes:

with I(pj,l) pxp circulant permutation matrix with
1 at column-(r + pj,l) mod-p for row-r.
(J,L) regular LDPC code of length N = pL.

n Example: J=2;L=3;ｐ＝５.

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

H =

= 0 0 0
0 2 3

n A (J,L) quasi cyclic (QC) LDPC code is totally
defined by (J-1)(L-1) integers.

n The quasi cyclic structure allows simple encoding
based on shift registers.

n Girth at most 12 and minimum distance at most
(J+1)!

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

Example:

Rate-0.55 Length-4100 Codes:

Rate-0.77 Length-1050 Codes:

Lifted quasi-cyclic LDPC codes:

n Start with (J,L) M1 x N1 small Hb matrix of
girth g at least 6.

n Replace every 1 by N2 x N2 circulant matrix.
n We obtain a (J,L) LDPC code with:

length N = N1 N2
co-dimension at most M1 N2
girth at least g.

RA-type LDPC codes:

linear time encodable.

LDPC codes over GF(q):

n In H, ; i.e. each edge is labeled
by a symbol of GF(q) - ~ rotation -

n Check sum-i:

)GF(qhij Î

)GF(),GF(

0

qxqh

xh

jij

j
jij

ÎÎ

=å

Ø A standard LDPC code is characterized by the random connection

between variable nodes and check nodes.

......

......

Repetition Codes SPC Codes

Variable
 Nodes

 Check
 Nodes

Generalized LDPC codes:

Ø Generalized LDPC codes are obtained by
replacing (dc, dc-1) SPC with other (dc, k)
subcodes. [Tanner–IT81]

 Subcodes
 NOT confined
 to SPC codes

(dc1, kc1)

......

......

Repetition Codes

Variable
 Nodes

 Check
 Nodes

(dc2, kc2)

(dcM,kcM)

doubly-GLDPC codes

...
...

...
...

...

......

(dv1, kv1)

(dv2, kv2)

(dv3, kv3)

(dvj, kvj)

......

(dvN, kvN)

dv1

dvN

kv1

kv2

kv3

kvj

kvN

(dc1, kc1)

(dc2, kc2)

(dcM, kcM)

dc1

dcM

Super variable node

Super check node

Transmitted bit

÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=H

1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 1 1 0 0 0 1 0 1 1 0 1 0
0 1 0 0 1 1 1 0 1 0 0 1 0 1
0 0 1 0 1 1 0 0 1 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 0 1 1 0

Construction steps:
Step 1: row expansion

In every row of parity check matrix, each “1” is replaced
with a subcolumn from the subcode parity check matrix of
the corresponding super check node based on a one-to-one
correspondence and each “0” is replaced with a zero subcolumn.

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=(7,4)HamH

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 0 0 0

Subcode

Construction steps (continued)
Step 2: column expansion

In every column of parity
check matrix each “1” in the
same subcolumn is replaced
with the same subrow in the
transposed generator matrix of
the corresponding super variable
node based on a one-to-one
correspondence and each “0” in
a subcolumn is replaced with a
zero subrow.

÷÷
ø

ö
çç
è

æ
=1G

1 1 0
0 1 1

Subcode

1
0
1
0
0
1

row
expansion

column
expansion

1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0

10
10
10
00
00
00
00
11
11
00
00
00
00
00
00
01
00
00

÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=H

1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 0 1 1 0 0 0 1 0 1 1 0 1 0
0 1 0 0 1 1 1 0 1 0 0 1 0 1
0 0 1 0 1 1 0 0 1 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 0 1 1 0

10
11
01

=T
1G ÷÷

ø

ö
çç
è

æ

Ø Target: obtain good threshold

Ø C1 is a rate-7/15 length-7650 code.

Ø Super variable nodes: (6,1) repetition code, (6,2) code with generator

matrix , (6,4) code with generator matrix , (6,5) SPC code.

Ø Super check node: (15,11) Hamming code

Ø Variable node distribution is , , ,
and .

Ø Threshold is 0.3dB, only 0.26dB away from capacity.

Construction of DGLDPC code C1

425.04 =l
425.01 =l 075.02 =l

111100
001111

111000
011100
001110
000111

075.03 =l

Simulation Result of C1

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
10-6

10-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE
R

Doubly GLDPC
(2,15) GLDPC

The (2, 15) GLDPC code, which is used to compare with C1 , has the same kind
of check node as C1 , i.e., (15,11) Hamming codes. The simulation result of the
(2, 15) GLDPC code is obtained from [Lentmaier et al.-CL99].

Construction of DGLDPC code C2

Ø Target: lower error floor

Ø C2 is a rate-1/2 length-1536 code.

Ø Super variable nodes: the (4,1) repetition code and the (4,3) SPC code.

Ø Super check node: (15,11) Hamming code

Ø Threshold is 0.77dB.

Simulation Result of C2

0.5 1 1.5 2 2.5 3 3.5 4
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

W
ER

Doubly GLDPC
(2,4)-LDPC code over GF(16)

The rate-1/2 length-1504 (2,4)-LDPC code over GF(16) is used to
compare with C2. The simulation result of this (2,4)-LDPC code is
obtained from [Poulliat et al.-ISTC 2006].

Random codes performance comparison on BEC

Part-V: Iterative Decoding of
LDPC Codes

Marc Fossorier
Department of Electrical Engineering

University of Hawaii

General concept:

v Each bit/check node is a processor, receiving messages
from neighbor nodes, and sending back messages after
processing.

Main goal: avoid direct correlation assuming incoming messages
are independent of each other.

Iterative Decoding on BEC:

v MLD: Find information set (K independent positions) without
erasures and perform Gaussian elimination: O(N 3).

v Iterative decoding: Propagate information available at each node.

0 0

?

11

e-1

e
e

e-1

Processing in bit nodes:

v If node of degree-J, J+1 copies of bit available:

J estimates from check nodes.

1 estimate from channel.

v Define .

v Transmitted information still erasure if all other incoming message
and initial estimate from channel are erasures:

)-itfor nodebit at ?"" geProb(messa lxl ==

)-itfor nodecheck at ?"" geProb(messa lyl ==

1
1

-
+ = J

ll yx e

Processing in check nodes:

v If node of degree-L, L incoming bits sum to 0.

v Transmitted information still erasure if at least
one incoming message is an erasure:

1)1(1 ---= L
ll xy

Combining the two equations:

v Threshold: largest value of such that

xl 0 ``with l large enough’’.

(xl+1 x > 0 possible)

11
1])1(1[--
+ --= JL

ll xx e

e

For irregular codes:

v Capacity achieving codes of rate R= 1- have
been found for the BEC (ex: heavy tail Poisson
distribution)

)]1(1[1 ll xx --=+ rle

e

Finite length issues:
Stopping set: subset V of variable nodes such that all neighbors are

connected to V at least twice.

These are poor configurations as iterative decoding stuck even if MLD

possibly correct

e e e

Iterative Decoding on BSC:

v MLD: NP_hard problem.

v Iterative decoding: Propagate information available at each node.

0 0

11

01 p-

0p

0p

01 p-

Gallager algorithm-A:

v At iteration-(i+1), send to check node initial value received from channel,
unless (J-1) other check values disagree with it.

v Define

v Ways to make an error:

(1) bit received in error and less than J-1 check sums indicate otherwise.

(2) bit received correctly and all J-1 check sums indicate otherwise.

)-itfor error an returns sum Prob(check)(iP i =

))1(1(1)(
0

--- JiPp

1)(
0)1(-

-
JiPp

v It follows:

v Check sums of weight L indicates an error if L-1 other bits
contain odd number of errors:

1)(
0

1)(
01)1())1(1(--

+ -+--=
JiJi

i PpPpp

2
)21(1

)1(
1

1

1

odd

)(

-

--

--
=

-÷÷
ø

ö
çç
è

æ -
= å

L
i

jL
i

j
i

j

i

p

pp
j

L
P

v A necessary and sufficient condition for pi+1 < pi:

v This equation can be used to determine the largest value of p0 such that
pi+1 < pi for i large enough.

v To this end it assumes the incoming messages are independent. On a
Tanner graph of girth g, it is true for iterations.

(~g/2 branches to reach 2 opposite nodes on a cycle and 2 branches per
iteration).

1)(
0

1)(
0)1()1(-- ->-

JiJi PpPp

úû
ú

êë
ê -
4
2g

Gallager algorithm-B:

v At iteration-(i+1), send to check node initial value
received from channel, unless T(i) other check
values disagree with it.

T(i) is a threshold associated with iteration-i.

v Using same reasoning as for alg-A, we obtain:

lJili
J

iTl

lJili
J

iTl
i

PP
l
J

p

PP
l
J

ppp

--
-

=

--
-

=
+

-÷÷
ø

ö
çç
è

æ -
-+

-÷÷
ø

ö
çç
è

æ -
-=

å

å

1)()(
1

)(
0

1)()(
1

)(
001

)1(
1

)1(

)1(
1

v The optimum theoretical threshold is the smallest T that
satisfies:

v Alg-A is equivalent to Alg-B with T(i) = J-1 (hence alg-B
always better).

v In practice, T(i) adjusted from simulation.

12

)(

)(

0

0 11
+-

÷÷
ø

ö
çç
è

æ -
£

-
JT

i

i

P
P

p
p

Iterative Decoding on AWGN:

v y = x + n with xi = (-1)ci and ni = N(0,N0/2)

v Define:

For (J,L) regular code: |N(m)| = L; |M(n)| = J.

Define:

{ }1:)(== mnhnmN
{ }1:)(== mnhmnM

0
2 /)1(2/1

00 e)()0|(Ny
ii

iNcyPp ---=== p

0
2 /)1(2/1

01 e)()1|(Ny
ii

iNcyPp +--=== p

. iesprobabilit have which \)(in

 ' bitsother on based is -bity that Probabilit:

',

,

x
nm

x
nm

qnmN

nxnr

.\)(in -bitfor iessprobabilit

other theand on based is -bity that Probabilit:

,'

,

mnMnr

fxnq
x
nm

x
n

x
nm

. based is -bity that Probabilit: n
x
n yxnf

).(in -bitfor iessprobabilit
other theand on based is -bity that Probabilit:

,' nMnr
fxnq

x
nm

x
n

x
n

)/();/(101
1

100
0 pppfpppf nn +=+=

m

nx
nf

x
nmq ,

}{ ,'
x
nmr

m

n
x
nmr ,

}{ ',
x
nmq

Belief Propagation (BP) Algorithm:

v BP algorithm is an iterative decoding algorithm [Gallager-
IRE62, MacKay-IT99] .

v Messages can be probabilities, and more conveniently, log-
likelihood ratios (LLR’s) for binary LDPC codes.

()

()

.1:

:step Vertical

 11/2

 11/2

:step Horizontal
. ; :tionInitializa

1
,

0
,

\)('

1
,'

11
,

\)('

0
,'

00
,

\)('

1
',

0
',

1
,

\)('

1
',

0
',

0
,

11
,

00
,

=+

=

=

÷÷
ø

ö
çç
è

æ
--=

÷÷
ø

ö
çç
è

æ
-+=

==

Õ

Õ

Õ

Õ

Î

Î

Î

Î

nmnmmn

mnMm
nmnmnnm

mnMm
nmnmnnm

nmNn
nmnmnm

nmNn
nmnmnm

nnmnnm

qq

rfq

rfq

qqr

qqr

fqfq

a

a

a

y.numericall stable moredomain -login Decoding

codeword. a
isdecision hard assoon as Stop :criterion Stopping

:Decision

1
,

1
,

1

0
,

0
,

0

nmnmn

nmnmn

rqq

rqq

=

=

() ()()
()
()
()

1
2

1
1

0
2

0
1

1
1

0
1

1
2

1
1

0
2

0
1

1
2

1
1

0
2

0
1

1
2

1
1

0
2

0
1

0
2

1
1

1
2

0
1

1
2

1
1

0
2

0
1

1
2

0
2

1
1

0
1

0
2

1
1

1
2

0
1

1

1
2

1
1

0
2

0
1

0

 2211/2

)-(1)-(1 11/2
12/1
12/1

0)1or 1(0 ~
1)1or 0(0 ~

qqqq
qqqqqq

qqqqqqqq
qqqqqqqq

qqqq

qqqqr
qqqqr

+=

--++=

--++=

--++=

--+

+++=

+++=

),(10 rr

),(1
1

0
1 qq

),(1
2

0
2 qq

Processing in check nodes:

Principles:

incoming messages + constraints Þ outgoing messages

()÷÷
ø

ö
çç
è

æ
= Õ

Î¢
¢

-

nmNn
nmmn zL

\)(

1 2tanhtanh2

1mnz

2mnz

4mnz

3mnz
3mnL
2mnL

4mnL

1mnL
2mnL

1mnz

4mnz

3mnz

Bit Nodes
N(m)

Check Node
m

Processing in bit nodes:

å
Î¢

¢+=
mnMm
nmnmn LFz

\)(

 ,
)(

å
Î

+=
nMm
mnnn LFznmz

4

nmz 3

nmz
2

nmz
1

nmL
4

nmL
3

nmL 2

nmL
1

nF
for hard decision

Check Nodes
M(n)

Bit Node
n

BP-Based Algorithm (min-sum)
_____ simplification in check node processing

()÷÷
ø

ö
çç
è

æ
= Õ

Î¢
¢

-

nmNn
nmmn zL

\)(

1 2tanhtanh2

nmnmNnnmNn
nm zz ¢

Î¢
Î¢

¢Õ ×» min)sgn(
\)(\)(

v Low complexity;

v Independent of channel characteristics for AWGN channels;

v Degradation in performance.

Bit Nodes
N(m)

Check Node
m

1mnz

2mnz

4mnz

3mnz
3mnL
2mnL

4mnL

1mnL

APP Algorithm
_____ simplification in bit node processing

nmL
4

nmL
3

nmL 2

nmL
1

nF

Zn å
Î

+=
)(nMm
mnnn LFZ

v Zn is not only for hard decision, but also as a substitution for Zmn.

v Lower computational complexity and storage requirement.

v Introducing correlation in the iterative decoding process.

Check Nodes
M(n)

Bit Node
n

APP-Based Algorithm _____ simplification in both nodes

nmz
4

nmz 3

nmz
2

nmz
1

Performance of BP and Its Simplified Versions

1 1.5 2 2.5 3 3.5 4
10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

BE
R

LLR BP, itr=200
BP-based, itr=200
APP, itr=20
APP-based, itr=20

(1008, 504) regular LDPC Code

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10-5

10-4

10-3

10-2

10-1

100

threshold with
BP decoding

threshold with
BP-based decoding

Eb/No (dB)

BE
R

 (s
ol

id
) /

 W
ER

 (d
as

he
d)

LLR BP, itr=100
BP-based, itr=100
APP, itr=100
APP-based, itr=30

(8000, 4000) Regular LDPC Code

2 2.5 3 3.5 4 4.5
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

BE
R

LLR BP, itr=500
BP-based, itr=10
APP, itr=500
APP-based, itr=10

(273, 191) DSC Code

2 2.5 3 3.5 4 4.5
10-6

10
-5

10-4

10-3

10
-2

10-1

100

Eb/No (dB)

BE
R

LLR BP, itr=500
BP-based, itr=10
APP, itr=500
APP-based, itr=10

(1057, 813) DSC Code

Improvement of the BP-based algorithm

Two statements hold:

1. sgn(L1) = sgn(L2) ;

2. | L1| < | L2| .

check node processing in different algorithms

iii
i ZzL min)sgn(2 Õ ×=

BP-based:

()÷÷
ø

ö
çç
è

æ
= Õ-

i
iZL 2tanhtanh2 1

1

BP:

Φc(•)

Z1

Z2

Zdc-1

L ...

Two improvements of the check node processing

Normalized BP-based algorithm:
Divide L2 by a normalization factor a greater than 1,

L2 ¬ L2 / a .

v Decoder parameters, a’s or b’s, need to be optimized.

Offset BP-based algorithm:
Decreasing |L2 | by a offset value b ,

|L2 | ¬ max(|L2 | - b, 0) .

Normalized APP-based algorithm

v APP-based algorithm + normalization in check nodes
Þ normalized APP-based algorithm.

Optimizing Parameters by Density Evolution
v Density evolution (DE) is a powerful tool to analyze message-

passing algorithms of LDPC codes [Richardson-IT01].

v Assumptions:

(1) symmetric channels (BSC, AWGN, ……);

(2) decoder symmetry;

(3) all-0 sequences transmitted;

(4) infinite code length --- loop free.

v Basic idea: numerically derive the probability density functions (pdf)
of the messages from one iteration to another, based on decoding
algorithms, and then determine the bit error rate.

n Threshold phenomenon: for an ensemble of code, a certain
kind of channels and a decoding algorithm, there exits a
threshold for a channel parameter, such that the BER
approaches to 0 with a channel parameter better than this
threshold, and the BER stays away from zero with a worse
channel parameter.

n Example:

For AWGN channel with variance s2, BPSK transmission,
BP as decoding algorithm, and (J,L) = (3, 6)

Þ sT = 0.880 (1.11 dB) [Richardson-Urbanke-IT01].

As a comparison, Shannon limit for BPSK is about 0.2 dB.

Density evolution algorithms

Φc(•)

Z1

Z2

Zdc-1

L ...

?

Check node processing:

Φv(•)

L1
L2

Ldv-1

Z

Fn

QL(l)

l

...

?

Bit node processing:

(2) In check nodes: DIFFERENT
Due to different ways of processing

(1) In bit nodes: SAME
v Only additions involved in both alogrithms.
v The output pdf is the convolution of the input pdf’s.
v Can use FFT to speed up the computation.

Density evolution algorithms for BP and BP-based algorithms

()÷÷
ø

ö
çç
è

æ
= Õ-

i
iZL 2tanhtanh2 1BP:

iii
i ZZL min)sgn(Õ ×=BP-based:

DE for normalized and offset BP-based algorithms

QL(l)

l

BP-based

()lQlQ
LL

LL ×¬
¬

aa
a
)(
/

v Normalized BP-based

-b b

QL(l)

l

BP-based

vOffset BP-based
()

ò-+

--++¬

-¬

β

β
)()(

 β)()(β)()()(
0 β,max

dllQl

lQlulQlulQ
LL

L

LLL

d

v Slightly modify the DE algorithm of the BP-based algorithm.

normalized BP-based

offset BP-based

Applying DE to Find Best Decoder Parameters
for Improved BP-Based Algorithms

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
1

1.5

2

2.5

a

th
re

sh
ol

d
s

(d
B)

(dv,dc)=(3,6)
(dv,dc)=(4,8)
(dv,dc)=(5,10)

Normalized
BP-based

Offset
BP-based

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

th
re

sh
ol

d
 (d

B)

(dv,dc)=(3,6)
(dv,dc)=(4,8)
(dv,dc)=(5,10)

(dv,dc) rate BP BP-
based

Normalized
BP-based

Offset BP-
based

α σ β σ

(3,6) 0.5 1.11 1.71 1.25 1.20 0.15 1.22

(4,8) 0.5 1.62 2.50 1.50 1.65 0.175 1.70

(5,10) 0.5 2.04 3.10 1.65 2.14 0.2 2.17

(3,5) 0.4 0.97 1.68 1.25 1.00 0.2 1.03

(4,6) 1/3 1.67 2.89 1.45 1.80 0.25 1.84

(3,4) 0.25 1.00 2.08 1.25 1.11 0.25 1.13

Thresholds (in dB) for various decoding algorithms.

1 1.5 2 2.5 3 3.5
10-6

10-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE
R

BP-LLR
BP-based
offset BP-based, =0.15
normalized BP-based, =1.25
normalized BP-based, =1.40

(504,252) LDPC code, (J,L)=(3,6)

An (8000, 4000) LDPC code, (J,L)=(3,6), 100 iterations.

1 1.2 1.4 1.6 1.8 2 2.2

10-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE
R

LLR BP
BP-based
norm. BP-based,a=1.25
norm. BP-based,a=1.60
offset BP-based,b=0.15
offset BP-based,b=0.25

1 1.5 2 2.5 3 3.5 4 4.5
10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

Eb/No (in dB)

BE
R

BP 200 itr

APP-based 200 itr
Normalized BP-based 200 itr
Normalized APP-based 200 itr

(273, 191) DSC code with BP, APP-based, normalized BP-
based and normalized APP-based algorithms, a = 2.0.

2 2.5 3 3.5 4 4.5
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Eb/No (in dB)

BE
R

BP 200 itr

APP-based 10 itr
Normalized BP-based 200 itr
Normalized APP-based 200 itr

(1057, 813) DSC code with BP, APP-based, normalized BP-
based and normalized APP-based algorithm, a = 4.0.

2.8 3 3.2 3.4 3.6 3.8 4
10-5

10-4

10-3

10-2

10-1

Eb/No (in dB)

BE
R

BP 1000 itr
Normalized APP-based 1000 itr

(4161, 3431) DSC code with BP and normalized APP-
based algorithm, a = 8.0.

Hardware Implementation of BP Algorithm

()

() ()÷
ø

ö
ç
è

æ
×=

÷÷
ø

ö
çç
è

æ
=

åÕ

Õ-

i
i

i
i

i
i

ZffZ

ZL

sgn

2tanhtanh2 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

f(x
)

1
1ln)(

-
+

= z

z

e
ezf

v f (z) can be implemented by look-up table (LUT).

v Only need two kinds of operations: LUT and additions.

| • | f (•) f (•)

| • | f (•) f (•)

| • | f (•) f (•)

...
...

...

Adder

Array

sgn(•) XOR
Array

),,(21 dcZZZ 

1L

2L

dcL

...

Check node implementation of BP algorithm

| • |

| • |

| • |

...

Comp.

Array

sgn(•) XOR
Array

),,(21 dcZZZ 

1L

2L

dcL

...

-
β

-
β

-
β

Check node implementation of BP-based algorithm and improved
versions

Quantization Effects

0-2 q -1-1

…… ……
2 q -1-11 2-1-2

q-bit quantization

Density evolution algorithms for the BP-based and the
normalized BP-based algorithm can be extended to quantized
cases.

q Δ β thresholds(dB)

5 0.15 1 1.24

5 0.075 2 1.60

6 0.15 1 1.24

6 0.075 2 1.22

7 0.15 1 1.24

7 0.075 2 1.22

7 0.05 3 1.22

Thresholds for quantized offset BP-based
decoding with (dv,dc)=(3,6).

1 1.2 1.4 1.6 1.8 2 2.2

10-5

10-4

10-3

10-2

10-1

Eb/No (dB)

BE
R

LLR BP
BP-based
offset BP-based, b=0.15
offset,q=5,D=0.15,b=1
offset,q=6,D=0.075,b=2

An (8000, 4000) , regular LDPC code, (J,L)=(3,6)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

-6

10-5

10-4

10
-3

10-2

10-1

100

Eb/No (dB)

BE
R

LLR BP, itr=200
BP-based, itr=200
offset BP-based,q=6,D=0.075, b=2, itr=200
BP-Gallager,q=7,D=1/8, itr=200
BP-Gallager,q=9,D=1/32, itr=200

v BP is sensitive to the error introduced by quantization.

(1008, 504) Regular LDPC Code

Comparison of various of decoding algorithms

regular &
irregular

regular

irregular

irregular

Algorithm Performance Complexity

BP

Min-sum

Normalized MS

Normalized MS

?

2-D Normalized Min-Sum decoding

§ Step 1: (i) Horizontal Step, for and each :

(ii)Vertical Step, for and each :

||min)sgn()1(
'\)('\)('

)1(
')(

)(-

Î
Î

- ´´= Õ i
mnnmNnnmNn

i
mnmdcmn

i VVU a

10 -££ Nn

å
Î

´+=
mnMm

i
nmndvnch

i
mn UUV

\)('

)(
')(,

)(b

å
Î

´+=
)(

)(
)(,

)(

nMm

i
mnndvnch

i
n UUV b

10 -££ Nn)(nMmÎ

)(nMmÎ

Density Evolution of 2-D Normalized MS Decoding

§ Density evolution for check nodes

§ Density evolution for bit nodes

÷
÷
ø

ö
ç
ç
è

æ
×¬ å

= j

i
U

d

j j

ji
U

ufuf
cmax

aa
r)(

1

)()(

()() ÷
÷
ø

ö
ç
ç
è

æ
×¬

-

=
å

j

ji
UU

-
d

j j

ji
V

vfFfFFvf
ch

vmax

bb
l 1)(

1

)()()()(

Optimal Normalization Factors

n Normalization factors pair

n Intractable when is large: use
differential evolution.

},...,,{ 21 weightcaaa=α

},...,,{ 21 weightvbbb=β

weightweight cv ´

),(βαf =

Simulation Results

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
10-4

10-3

10-2

10-1

100

Nb/No(dB)

W
ER

Standard BP

2-D Normalized Min-Sum

Conventional Min-Sum

Min-Sum

Iterative decoding of DG-LDPC codes

)y,u|1(P
)y,u|0(P

log)(
][,

)(
][,)(

, ,,
n

i
pnpn

n
i
pnpni

tm x
x

V
pnpn =

=
=

For super variable node

Super
variable
node n

......

vnkny ,

1,ny

)(
1,

i
nu

)(
,
i
dn vn

u

)(
, 1,1,

i
tm nn

v

)(
, ,,

i
tm vndnvndn

v

xn,1

xn,dvn

å ÕÕ

å ÕÕ

= =¹=

-

= =¹=

-

=

1: 1

2

 1,

0: 1

2

 1,)(
,

,

0

,,

,
)(

,

,

0

,,

,
)(

,

,,

ee

ee
log

pnn

vn
jnjn

vn
jn

i
jn

pnn

vn
jnjn

vn
jn

i
jn

pnpn

x

k

j

N
cyd

pjj

xU

x

k

j

N
cyd

pjj

xU

i
tmV

b

b

)y,u|1(P
)y,u|0(P

log)(
][,

)(
][,)(

, ,,
n

i
pnpn

n
i
pnpni

tm x
x

V
pnpn =

=
=

)v|1(P
)v|0(P

log)1(
][,

)1(
][,)(

, ,, -

-

=

=
= i

qmqm

i
qmqmi

sn z
z

U
qmqm

å Õ

å Õ

= ¹=

-

= ¹=

-

-

-

=

1: ,1

0: ,1)(
,

,

,
)1(

,

,

,
)1(

,

,,

e

e
log

qmm

cm
jm

i
jm

qmm

cm
jm

i
jm

qmqm

z

d

qjj

zV

z

d

qjj

zV

i
snU

z

z

)v|1(P
)v|0(P

log)1(
][,

)1(
][,)(

, ,, -

-

=

=
= i

qmqm

i
qmqmi

sn z
z

U
qmqm

For super check node

Super check
node m

......

)(
, 1,1,

i
sn mm

u

)(
, ,,

i
sn cmdmcmdm

u

)1(
1,
-i

mv

)1(
,
-i
dm cm

v

zm, 1

zm, dcm

Decoding of non binary LDPC codes:

Combined approaches:

S I S OS I S O

Lapriori (= 0)

Lc y v(1)

P[]

v(2)

Lext

v(1) v(2) cMLD

y

Iterative Decoder

Combined approaches:

Most likely
a-priori
codeword

Reduced
list

search
Lc y

Lapriori

c(0)

cbest

c(0)

cbest

(= Lc |y|)

List decoder (RBD)

S I S OS I S O

(= 0)

Lc y

P[]
LextLapriori

R B D c(2)R B D c(1)

c(1)
c(2)

y v(1)
v(2)

Combined decoder

c(1)
c(2)

cMLD = c(4)

c(3)

v(1)
v(2)

v(3)
v(4)

y

Potential Improvement

