
Forschungszentrum Telekommunikation Wien

Iterative Decoding and LDPC Codes

Jossy Sayir

Cours d’été à Peyresq, Juillet 2007

Based on courses prepared in collaboration with

Ingmar Land & Gottfried Lechner

© ftw. 2007

Overview

Linear Codes
Coding theorem for the Binary Erasure Channel (BEC)

Iterative Processing
Low-Density Parity-Check Codes

Density Evolution for the BEC
Density Evolution for other channels

EXIT Charts
EXIT Charts for the BEC, area property

Information Combining

© ftw. 2007

Linear Codes
Let G be an KxN matrix of rank K over GF(qm)
Linear code

C = {x∈GF(qm)N: ∃u∈GF(qm)K | x = uG}
G is called a generator or encoding matrix of C
C is a linear subspace of GF(qm)N of dimension K
Code rate: R = m log q K/N

Pick any Nx(N-K) matrix H of rank N-K such
that GHT = 0

Then C = {x∈GF(qm)N: xHT = 0}
H is called a parity-check matrix of C

© ftw. 2007

Example over GF(2)

0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0
0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0
1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1
0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0

(x1 x2… x16) = (u1… u6)

Received: (1 X X X X 1 0 0 0 1 X 1 X X X 1)

0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0
1 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 0 1 0

(x1 x6x7 x8 x9 x10 x12 x16) = (u1… u6)

Remove columns corresponding to erasures…

N = 16
K = 6

© ftw. 2007

Example (continued)
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 1 0 1 1
0 1 1 1 0 0
0 0 0 1 0 0

(x1 x6x7 x8 x9 x10) = (u1… u6)Drop last 2 columns:
(system of equations
is overdetermined)

1 0 0 1 0 1
0 1 1 0 1 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(x1 x6x7 x8 x9 x10) = (u1’… u6’)
Triangulize problem:

g3
g4
g2
g6
g1
g1+g4+g5+g6

Solution: (x1 x6x7 x8 x9 x10) = (1 1 0 0 0 1)
= g1’+ g2’+ g3’+ g4’+ g5’+ g6’
= g2 + g3 + g5

(u1 u2 u3 u4 u6) = (0 1 1 0 1 0)

© ftw. 2007

The Binary Erasure Channel

0
0

1
1

1-δ

1- δ

δ

δ Δ

Input Output

BEC
0, 1, 1, 0, 1… 0, 1, Δ, 0, Δ, …

© ftw. 2007

The Big Question

What is the probability of decoding successfully,
in function of the erasure probability δ, the code
rate R and the length N?

We have learned how to decode a codeword that has
been transmitted over a Binary Erasure Channel
(by solving a system of equations, whenever possible)

We will suppose that the code V has been selected at
random by choosing an encoding matrix G at random
among all binary KxN matrices (K = NR)

© ftw. 2007

Converse Coding Theorem

If the information rate R is higher than 1-δ,
the transmission cannot be arbitrarily reliable

BEC
0, 1, 1, 0, 1… 0, 1, Δ, 0, Δ, …Transmitter

Encoder

Proof:

Even if a genie tells the transmitter where the erasures
will be, the best strategy is to place the data uncoded
in all positions that won’t be erased. We can only
transmit 1-δ bits per use on average this way.

© ftw. 2007

Let us assume R = K/N = 1-δ-ρ.

On average, there will be δN = N-K-ρN
erasures per block. For now, let us assume
that there will be exactly δN erasures every
time.
Our matrix inversion decoder will work if the
remaining K+ρN columns of the encoder
matrix are linearly independent, i.e., if the
resulting Kx(K+ρN) matrix has rank K.

0.0 1.0

R

δρ

Coding Theorem

© ftw. 2007

010110101011001110101101101010111010101
101011001110101101101010101101010110011
011001110101101101010011001110101101100
111010110110101010110101011100110011101
110101010110101001010011001110100011001
011011010101011010101101010011001110110
100111010110110101001100101100111010001
101101101010011001110101101101010010010
011010101011010101111100111010010101101
101101010010101101010110101101010111001

δN

K

NR = K/N = 1-δ-ρ

(1-δ)N = K + ρN

© ftw. 2007

The erasures will be placed at random positions in the
codeword (not all at the end as in our illustration)

There are erasure patterns

Evaluating the probability of success for a given
matrix means checking if each of these matrices is
invertible…

Coding Theorem (cont…)

N

δN

© ftw. 2007

Random Coding Experiment

Pick a KxN matrix at random

Generate an information sequence at random

Generate the corresponding codeword

Generate an erasure pattern at random

What is the probability of success of the matrix
inversion decoder?

© ftw. 2007

What is the probability that a LxM matrix (L ≤ M)
chosen at random has rank L?

1xM: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2xM: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3xM: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Rank of a random matrix

2M-1 choices

2M-1 choices
2M-2 choices

2M-1 choices
2M-2 choices
2M-4 choices

© ftw. 2007

The number of LxM linearly independent
matrices is thus:

If our LxM matrix is chosen at random
among the 2LxM binary matrices, then the
probability that it have rank L is:

© ftw. 2007

If L = M, we have:

If L ∞, P(full rank) 0.2887880950866…

Therefore, R=1-δ (ρ=0), the probability of successful
decoding for N ∞ tends towards 0.2887880950866…

© ftw. 2007

If L < M, we have:

If M = L+1, the product starts with 3/4,
if M = L+2, the product starts with 7/8, etc…

M - L

In our case, L = K and M = K+ρN

M – L = ρN

© ftw. 2007

For a fixed δ and ρ (R=1-δ-ρ), the probability of
successful decoding is

P(success) = ∏i=ρN+1…K (1-2-i)

It can be made arbitrarily close to 1 for a given ρ
by choosing N large enough

© ftw. 2007

Prob. of successful decoding

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Pr
ob

ab
ili

ty
 o

f
Su

cc
es

s

Code block size N

ρ = .01
(i.e., R is .01 less than the maximum possible rate)

© ftw. 2007

Information Theory for the
Binary Erasure Channel

Peter Elias
1923 - 2001

Professor at MIT,
one of the most original
and prolific researchers
in information theory,
inventor of convolutional
codes

Presented coding
theorems for linear codes
for the BEC in London,
1955 (without proof…)

© ftw. 2007

What we have learned…

For any information rate R < 1-δ, it is possible
to achieve any desired non-zero probability of error
provided that we choose K and N large enough.

Arbitrary reliability is possible up to a certain rate,
but we have to work with very large block sizes

We can expect to do pretty well by simply choosing
our codes at random

In plain English:

And furthermore:

(Coding theorem)

© ftw. 2007

SUDOKU

978

5914

826

627

1384

368

689

5916

735

© ftw. 2007

SUDOKU Factor Graph
va

ri
ab

le
 n

od
es

constraint nodes

© ftw. 2007

SUDOKU Message Passing

81 variables, 27 constraints
every variable participates in 3 constraints
every constraint ties 9 variables
message passing SUDOKU solver
message = set of possible values
not every solvable SUDOKU can be solved by
mere message passing (only “easy” SUDOKUs)

© ftw. 2007

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

Iterative Decoding for a
Parity-Check Matrix…

Received: (1 X X X X 1 0 0 0 1 X 1 X X X 1)

Parity-Check
Matrix:

© ftw. 2007

Iterative Decoding

(1 X X X X 1 0 0 0 1 X 1 X X X 1)0

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

(1 X X 0 X 1 0 0 0 1 X 1 X X X 1)1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

(1 X X 0 X 1 0 0 0 1 X 1 X 1 X 1)1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

(1 X X 0 X 1 0 0 0 1 1 1 X 1 X 1)0

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

(1 X X 0 X 1 0 0 0 1 1 1 X 1 0 1)1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

(1 X 1 0 X 1 0 0 0 1 1 1 X 1 0 1)1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

(1 1 1 0 X 1 0 0 0 1 1 1 X 1 0 1)0

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Iterative Decoding

Decoded: (1 1 1 0 0 1 0 0 0 1 1 1 X 1 0 1)1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

© ftw. 2007

Factor Graph of Parity-Check Matrix

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

H =

va
ri

ab
le

 n
od

es

constraint “check”nodes

© ftw. 2007

Message Passing Decoder

N=16 variables, N-K=10 constraints
number of constraints for a variable =
Hamming weight of the corresponding column
number of variables for a constraint =
Hamming weight of the corresponding row
message passing erasure decoder
message = value or erasure
not every decodable received word can be
decoded using mere message passing
message passing for other channels
message = probability distribution

© ftw. 2007

“Tree” Perspective

A E

B CD F GH

basic elements

Do you know
these codes?

2

12 4 3 8 7 6

© ftw. 2007

Computation for the BEC

Single Parity-Check Code

mcv

mvc,i

if no mvc,i is an erasure

if at least one mvc,i is an erasure

Repeat Code

mvc

mcv,i

if at least one mcv,i is no erasure
or the node itself is no erasure

if all mcv,i are erasures and the node
itself is an erasure

© ftw. 2007

General Binary Input Channels

Instead of messages 0, 1, Δ we transmit Log-Likelihood Ratios
over the edges of the graph.

Single Parity-Check CodeRepeat Code

© ftw. 2007

“Tree” Perspective in Practice

A E

B CD F GH

2

12 4 3 8 7 6

13 1 14 5 11 16 15 9 10

When using random codes with finite block length, the
tree perspective is only true for a few steps.

© ftw. 2007

Iterative Decoding

We were lucky. This decoder will not always work…

What property must a parity-check matrix have for
iterative decoding to succeed with a high probability?

In effect, iterative decoding is possible in this setting
whenever the matrix can be triangulated by simple
row & column swaps

© ftw. 2007

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

Low-Density Parity-Check Matrix

3 2 2 3 2 2 2 2 2 2 3 2 2 3 2 2

4
4
4
3
4
4
3
3
4
4

Row weights

Column weights

The parity-check matrix must have a low density.

© ftw. 2007

Low-Density Parity-Check Coding

Invented by Robert G. Gallager
in his PhD thesis, MIT, 1963

(re-discovered by MacKay
from Cambridge, England
in 1999)

Bob Gallager

From
 the W

ebsite of the Eduard
Rhein

Stiftung

© ftw. 2007

Regular LDPC Codes
0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0
0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0
0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0

6
6
6
6
6
6
6
6
6
6

Row weights

3 3

Column weights
dv = 3

dc = 6

Columns and rows in the parity-check matrix of a
regular LDPC code have fixed weights dv and dc
(as opposed to irregular LDPC codes)

© ftw. 2007

Regular Codes

How many ‘1’s are there in the parity-check matrix?

Answer: n1 = dv N = 3 x 20 = 60
= dc (N-K) = 6 x 10 = 60

The design rate of the code is: R = K/N = 1 – dv/dc

If the rows of the parity-check matrix are linearly
independent, the design rate is the true code rate

© ftw. 2007

A few thoughts

Practical implementation typically (dv,dc)=(3,6),
blocklength N = 105

Very, very sparse parity-check matrix (only 6 ones in a
row of length 105, 3 ones in a column of 5x104)
How are the distance properties of a code affected by
the low-density property of H?
Will the decoder performance depend on the particular
H or only on the code?
How likely is it that a random code has a low-density
parity-check matrix? Can we “de-densify” a high-
density parity-check matrix?
How well will the message-passing decoder work in
practice? Can it approach capacity?

© ftw. 2007

Concentration theorems
(Luby, Mitzenmacher, Shokrollahi, Spielman / Richardson & Urbanke)

We will only consider expected decoding behavior over all
graphs of a given degree distribution (not the behavior for
one specific graph/code)

Concentration: the probability that the performance of a
specific code diverge by ε from the expected performance
over all graphs converges to 0 exponentially in the code
length N

Cycle-free behavior: for any iteration number nit, one can
choose a code length N so that the expected performance
at iteration nit is as near as desired to the decoder
performance under the tree assumption

expected performance suffices

tree behavior suffices for N ∞

© ftw. 2007

Tree Decoding Performance
for the BEC

A E

2

12 4 3 8 7 6
δ

δ

δ
δ δ δ

δ

δ: channel erasure
probability

© ftw. 2007

Reminder: Elements of
the Tree Perspective

A E

B CD F GH

2

12 4 3 8 7 6

Variable
Node
Decoder

Check
Node
Decoder

© ftw. 2007

Reminder: Decoding for the BEC

Single Parity-Check Code

mcv

mvc,i

if no mvc,i is an erasure

if at least one mvc,i is an erasure

Repeat Code

mvc

mcv,i

if at least one mcv,i is no erasure
or the node itself is no erasure

if all mcv,i are erasures and the node
itself is an erasure

© ftw. 2007

“Simulating Simulating”
(Tom Richardson, ISIT 2004, Chicago)

Simulation: run message-passing decoding for
codewords transmitted over a binary erasure channel
and measure the resulting error probability

Simulating simulation: compute probability
distributions of messages passing through the
decoder

Instead of mvc and mcv, compute *mvc = P(mvc = 0,1,∆)
and *mcv = P(mcv = 0,1,∆)

© ftw. 2007

Question

What is *mvc at iteration 0 ?

Notation: *mvc = (P(mvc = 0), P(mvc = 1), P(mvc = ∆))

Intuitively: *mvc(0) = ((1-δ)/2, (1-δ)/2, δ)
Why is this correct??

Linear codes…
It suffices to consider binary messages
mvc/cv’(nit) = 1 if erasure, 0 if non-erasure
and track *mvc/cv’(nit) = P(mvc/cv’(nit) = ∆)

© ftw. 2007

Combining Erasure Probabilities

*mcv’(nit-1)

*mvc’(nit) ??
δ = *mvc’(0)

*mcv’(nit) ??

*mvc’(nit)

Equivalently:

·
*mcv’(nit-1)

*mvc’(nit) ??
δ = *mvc’(0)

AND - operation

+
*mvc’(nit)

*mcv’(nit) ??

OR - operation

© ftw. 2007

AND-OR Tree

·δ

+ +

· · · · · ·δ δ δ δ δ δ

… … … … … …

Let’s simplify notation:
p0 = δ = *mvc’(0)
qk = *mcv’(k) ,
pk = *mvc’(k)

© ftw. 2007

Solution

pk = p0 (1 – (1 – pk-1) dc-1)dv-1

qk = 1 – (1 – pk-1) dc-1

pk = p0 qk
dv-1

© ftw. 2007

Applying the recursion

dv=3 dc=6

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

depth

P
l

0.40 0.41 0.42

0.43

Threshold:
0.42944

© ftw. 2007

BEC & Irregular LDPC Codes
Luby, Mitzenmacher, Shokrollahi & Spielman

Michael G. Luby was at Univ. of Berkeley and founded
Digital Fountain after co-inventing irregular LDPC
codes

Michael Mitzenmacher got his PhD from Berkeley in
1996, worked for DEC Research, then joined Harvard
University in 1999 as Assistant Professor

Daniel A. Spielman got his PhD from MIT in 1995, did a
post-doc in Berkeley 1995-96, then went back to MIT
as Assistant Professor

M. Amin Shokrollahi got his Dipl.-Ing. from the Univ.
of Karlsruhe, his Dr. from the Univ. of Bonn. 1991,
worked as a researcher in Berkeley, joined Bell Labs
from 1998 to 2000, then Digital Fountain. He has been
a Professor at EPF Lausanne since 2003.

© ftw. 2007

Entropy/Uncertainty

H(PX) is the entropy of the probability distribution of X
The word “entropy” is used because of the similarity
between the formula for H and the entropy in physics
H(PX) is a measure for our uncertainty about the value of
X
Alternatively, we write H(X) for H(PX)
Keep in mind that H(.) is always a function of a
probability distribution!

H(PX) = -∑x PX(x) logb PX(x)

© ftw. 2007

Binary Entropy Function

L = 2, PX(0) = p, PX(1) = 1-p

H(X) = h(p)

p

h(p)

The binary entropy function

© ftw. 2007

Entropy Bounds

For an L-ary random variable X,
0 · H(X) · logb L

with equality on the right when PX(x) = 1/L for all x,
with equality on the left when PX(x) = 1 for one x
and P(X) = 0 for all other x.

Example:
Random experiment: pick a student at random
Random variable X: 1 if female, 0 if male

Y: 1 if wears glasses, 0 if not
Z: 1 if Norwegian, 0 if not

© ftw. 2007

Equivocation

The equivocation, or average conditional entropy,
of X given Y is defined as

H(X|Y) = ∑y PY(y) H(PX|Y=y)

Warning: do not confuse with H(X|Y=y) = H(PX|Y=y)

© ftw. 2007

Properties of the equivocation

“Conditioning can only reduce entropy”

0 · H(X|Y) · H(X)

equality on the left if Y essentially determines X
equality on the right if X and Y are independent

Warning: H(X|Y=y) can be larger than H(X)!!
“Conditioning on events can increase entropy”

Chain rule: H(XY) = H(Y) + H(X|Y)

H(X1…XN) = H(X1) + H(X2|X1) + … + H(XN|X1…XN-1)

© ftw. 2007

Mutual Information

The mutual information between X and Y is

I(X;Y) = H(X) – H(X|Y)
= H(Y) – H(Y|X)

0 · I(X;Y) · min[H(X),H(Y)]

equality on left if X and Y independent
equality on right if X essentially determines Y

or vice-versa

I(X;Y) is a function of the joint distribution PXY

© ftw. 2007

The essence of Mutual Information

I(X;Y) tells us how much uncertainty is
reduced about X by knowing Y (or vice-versa)

I(X;Y) tells us how much information X gives
about Y (or vice-versa)

I(X;Y) is a very general type of correlation
measure: it is 0 when X and Y are independent
(and thus uncorrelated) and maximized when
X is a function of Y or vice-versa

© ftw. 2007

Mutual Information

limN→∞Pb = 0 ⇒ lim I(Ui; Ûi) = lim I(Ui;Y)
= lim I(Xi;Y)
= 1 , for all i

Channel
Coding

DMC
BSS

Channel
Decoding

U1…UK X1…XN

Y1…YNÛ1…ÛK
Destination

limN→∞PB = 0 ⇒ limN→∞ I(U; Û) = K
⇒ limN→∞ I(U; Û)/N = limN→∞ I(X; Y)/N = R

(for binary codes)

© ftw. 2007

Iterative Decoding

How does the mutual information evolve in an iterative
decoding algorithm?

We have learned that it is possible to optimize LDPC
codes so as to maximize their threshold

We will see that we can design capacity-achieving,
iteratively decodable families of LDPC codes!!
(i.e., threshold capacity)

What is the implication in terms of mutual information?

© ftw. 2007

Iterative = Cascaded Decoding!

Channel
Coding ChannelBSS

Decoder
Iteration 1

Decoder
Iteration 2

Decoder
Iteration 3

Ich

Iex1

Iex2

Iex3

© ftw. 2007

Mutual Information Trajectory

…
1 2 7 943 5 86 10

Iterations

I(
X

i;Y
[it

])

0

1

© ftw. 2007

Mutual Information Trajectory

The L-values calculated in the tree are optimal in the
sense of a MAP-calculator, i.e., L(Xi|Y[it]) is a
sufficient statistic for Y[it]:

I(Xi ; L(Xi|Y[it])) = I(Xi ; Y[it])

We can also draw the trajectory at half-iterations
(after variable nodes & after check nodes)

But: the output messages of variable nodes and check
nodes are extrinsic L-values, whereas the mutual
information trajectory we consider now is for
a-posteriori L-values

© ftw. 2007

Message Passing

Variable
Node

Decoder

Check
Node

Decoder LC
Ex

LV
A

LC
A

LV
Ex

LC
APPLch

© ftw. 2007

Tracking of Messages
Tracking of messages would mean tracking of pdfs

(Density Evolution)

Instead of tracking the pdfs we reduce the problem
to tracking of mutual information between the
messages and the codeword which are scalar
quantities

IA, IE average symbolwise mutual information

© ftw. 2007

Extrinsic Information Transfer Chart

IA
(1)

IE
(1)

0
10

1

IA
(2)

IE
(2)

© ftw. 2007

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersecting Curves

IA,chk

IA,var IE,chk

IE,var

© ftw. 2007

Extrinsic Information
Transfer Charts (Stephan ten Brink)

Stephan did his PhD at the
U of Stuttgart, then
worked for Bell Labs U.K.,
then New Jersey. He is
currently with RealTek,
California.

Photo by Jossy
Sayir

(Stephan is the person on the right, not on the left)

© ftw. 2007

Computing EXIT transfer functions

Enc 1 comm. chSrc

Enc 2 extr. ch
Decoder

y

a

app

e

A-priori messages are modeled as independent noisy
observations of the encoded source.

Assumptions:

- independent observations

- model for extrinsic channel

x

v

u

with equality if the
decoder is “optimal”

© ftw. 2007

Transfer Functions

Enc 1 comm. chSrc

Enc 2 extr. ch
Decoder

y

a

app

e

Assuming a model for the extrinsic channel we can vary
IA by varying the channel parameter.

At the output of the decoder we can
measure/calculate IE ⇒ IE = f(IA)

x

v

u

This is only exact if the model of the extrinsic
channel is correct!

© ftw. 2007

Variable Nodes and BEC

BEC qSrc

rep dv BEC p
Decoder

y

a

app

e

Extrinsic channel is modeled as BEC (exact).

x

v

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IA

IE dv = 3, 4, 5

© ftw. 2007

Check Nodes and BEC

Src

SPC dc BEC p
Decoder

y

a

app

e

x

v

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IA

IE

dc = 6, 8, 10

SPC ... single parity check

© ftw. 2007

Other Channels

Modeling the extrinsic channel as a BEC is exact if the
communication channel is a BEC.

For other communication channels, the assumption of
the extrinsic channel is in general an approximation.

If the communication channel is an AWGN channel, we
model the extrinsic channel also as an AWGN, but this
is only an approximation!

© ftw. 2007

AWGN Channel

AWGN σcSrc

rep dv AWGN σx

Decoder

y

a

app

e

x

v

u

Src

SPC dc AWGN σx

Decoder

y

a

app

e

x

v

u

variable nodes

check nodes

© ftw. 2007

Convolutional Codes

Stephan ten Brink, “Convergence Behavior of Iteratively Decoded Parallel
Concatenated Codes”, IEEE Trans. Comm. October 2001

© ftw. 2007

Serial / Parallel Concatenation

π

-
π+ + +Dec 1

π-1+ + +Dec 2

+
+

+ +

+ +

+ + -

y

y’

app(1)

app(2)

e(1)

e(2)

-

-

a(1)

a(2)

Ch
x

switches open

→ serial concatenation

switches closed

→ parallel concatenation

Serial concatenation:
e = app - a

Parallel concatenation:
e = app - a – y

© ftw. 2007

Summing LLRs

What is the effect on mutual information when we
add L-values?

SRC BEC1

BEC2

LLR

LLR
+

δ1

δ2

L1

L2

x

I1 = I(X;L1) = 1 - δ1

I2 = I(X;L2) = 1 - δ2

I(X;L1L2) = 1 - δ1δ2

= 1 – (1-I1)(1-I2)

© ftw. 2007

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intersecting Curves

IA,chk

IA,var IE,chk

IE,var

© ftw. 2007
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01
0.01

0.01

0.010.01

0.05

0.05

0.05

0.05
0.05

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.3
0.3

0.3

0.4
0.4

0.4

0.5

0.5

0.6

0.6

0.7
0.8

0.9

BER from EXIT Chart (BEC)

I(X;APP) = 1 – Pb = 1 – (1-IA)(1-IE)

app = a + e

© ftw. 2007

Independent Observations

Messages received
from the extrinsic
channel are
independent
observations, which is
only fulfilled if N → ∞

© ftw. 2007

Statistics

We use
statistical
quantities, which
are only correct
if N → ∞

threshold Eb/N0

Pb

© ftw. 2007

Summary of Assumptions

- Messages received from the extrinsic channel
are independent observations, which is only
fulfilled if N → ∞

- We use statistical quantities, which are only
correct if N → ∞

- We model extrinsic messages with an extrinsic
channel. This can only be done exact for the BEC.
The Gaussian assumption is an approximation.

© ftw. 2007

Area of LDPC Component Codes

IA

IE IA

IE

Necessary condition for successful decoding:

© ftw. 2007

Consequences of Area Property

“Surprising” result:

The area property tells us that the decoder can
only converge if the rate is smaller than capacity!

© ftw. 2007

More Consequences...

Suppose the condition for convergence is fulfilled

0 · γ < 1

What is the result of this inequality?

© ftw. 2007

Area and Rate Loss

If γ → 1 we can transmit at rates that approach capacity.
If γ < 1 we are bounded from capacity.

γ → 1 means that 1 - Av = Ac

Furthermore, the curves must not intersect.

⇒ The curves have to be matched.

Code design reduces to curve fitting!

© ftw. 2007

Curve Fitting – Code Mixture

We only considered regular codes, where every symbol
has the same properties. Therefore, averaging over all
symbols is equivalent to the mutual information of an

arbitrarily symbol.

The resulting EXIT function is the weighted average
of the EXIT functions of the groups.

If we partition m into nu groups j=1...nu each with length lj,
we can write IE as

© ftw. 2007

Example – Variable Mixture

BEC qSrc

rep dv BEC p
Decoder

y

a

app

e

x

v

u

70% of the variable nodes have dv=2
30% of the variable nodes have dv=5

This is a polynomial in p
Note that ∑ γj = 1

© ftw. 2007

Example – Variable Mixture

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IA

IE

IE1

IE2

© ftw. 2007

Curve Fitting

Lets fix the EXIT function of the check node decoder.

For curve fitting, we can exchange the following quantities

Therefore, we can write the EXIT function of the variable
node decoder as the inverse EXIT function of the check

node decoder.

© ftw. 2007

Taylor Series Expansion

Assuming for example dc=5 we can expand IEv
as a Taylor series

Truncating the Taylor series and normalizing the
coefficients to 1 results in

Compare this with the transfer function of the
mixture of variable nodes...

© ftw. 2007

Curve Fitting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

© ftw. 2007

Even more Consequences...

Using the same model as for the variable and check node
decoder, it can be shown that the areas for a serial

concatenated code with an outer code Rout=kout/nout and
an inner code Rin=kin/nin are given by

The same necessary condition 1-Aout < Ain leads to

If the inner code has rate < 1, i.e. I(X;Y)/nin <C then we
can not achieve capacity with serial concatenated codes!

