Sparse Representations: from Source Separation to Compressed Sensing

Rémi Gribonval

METISS project-team (audio signal processing, indexing, source separation) INRIA, Rennes, France

UNE UNITÉ DE RECHERCHE À LA POINTE DES SCIENCES ET DES TECHNOLOGIES DE L'INFORMATION ET DE LA COMMUNICATION

> Ecole d'été en Traitement du Signal Peyresq, Juillet 2009

Structure of the course

- Part I: Overview
- Part II: Algorithms, complexity & convergence
 - Lp minimization
 - Greedy Algorithms
- Part III: Recovery, stability, robustness
 - ♦ Null Space Properties and Lp minimization
 - Exact Recovery Condition and greedy algorithms
 - * Restricted Isometry Constants, stability and robustness
- Part IV: Compressed Sensing and Random Matrices

Introduction

Compression
Adaptive
representation
Feature extraction
Kernel methods
(SVM ...)

Sparsity = old concept! (wavelets, ...)

Denoising
Blind source
separation
Compressed
sensing

Natural / traditional role:

Sparsity = low cost (bits, computations, ...)

direct goal

Novel indirect role

Sparsity = prior knowledge Tool for inverse problems

Overview

- Introduction : source separation and inverse problems
- Sparse decomposition algorithms
 - + LI minimisation
 - Matching Pursuits
- Provably good algorithms to recover sparse representations
- Compressed sensing & random sampling

« Blind » Audio Source Separation

« Softly as in a morning sunrise »

Blind Source Separation

Mixing model: linear instantaneous mixture

• Source model: if disjoint time-supports ...

- ... then clustering to :
- 1- identify (columns of) the mixing matrix
- 2- recover sources

Blind Source Separation

Mixing model: linear instantaneous mixture

• In practice ...

Time-Frequency Masking

Mixing model in the time-frequency domain

$$egin{array}{ll} Y_{ ext{right}}(au,f) \ Y_{ ext{left}}(au,f) \end{array} = \mathbf{A} \ \mathbf{S}(au,f) \end{array}$$

And "miraculously" ...

... time-frequency representations of audio signals are (often) **almost disjoint**.

Sparse decomposition algorithms

Vocabulary

Forward

linear model

 $\mathbf{b} \approx \mathbf{A} x$

Sparsity and III-Posed Inverse Problems

• III-posedness if more unknowns than equations

$$\mathbf{A}x_0 = \mathbf{A}x_1 \not\Rightarrow x_0 = x_1$$

- Uniqueness of sparse solutions:
 - \bullet if x_0, x_1 are "sufficiently sparse",
 - + then $\mathbf{A}x_0 = \mathbf{A}x_1 \Rightarrow x_0 = x_1$
- Recovery with practical algorithms
 - ◆ Thresholding, Matching Pursuits, Lp minimization p<=1,...</p>

Overall compromise

Approximation quality

$$\|\mathbf{A}x - \mathbf{b}\|_{2}$$

ullet Ideal sparsity measure : ℓ^0 "norm"

$$||x||_0 := \sharp \{n, \ x_n \neq 0\} = \sum_{n=1}^{\infty} |x_n|^0$$

Relaxed sparsity measure

$$||x||_p := (\sum_n |x_n|^p)^{1/p}$$

Algorithms

Global optimization

Iterative greedy algorithms

Principle	$\min_{x} \frac{1}{2} \ \mathbf{A}x - \mathbf{b}\ _{2}^{2} + \lambda \ x\ _{p}^{p}$	
Tuning quality/sparsity	regularization parameter λ	
Variants	 choice of sparsity measure p optimization algorithm initialization 	

Principle

$$\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

- **♦** Sparse representation $\lambda \rightarrow 0$
- Sparse approximation $\lambda > 0$

Principle

$$\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

 $\lambda \to 0$

- ◆ Sparse representation
- Sparse approximation $\lambda > 0$

Linear

$$p = 0 \qquad p = 2$$

Principle

$$\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

 $\lambda \to 0$

- ◆ Sparse representation
- ◆ Sparse approximation

 $\lambda > 0$

NP-hard combinatorial

Linear

$$p = 0$$

$$p = 1$$

$$p=2$$

Principle

$$\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

- Sparse representation
- $\lambda \to 0$
- ◆ Sparse approximation

Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)

Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, Defrise, de Mol 2004, Combettes, & Pesquet 2008 ...]

Principle

$$\min_{x} \frac{1}{2} \|\mathbf{A}x - \mathbf{b}\|_{2}^{2} + \lambda \|x\|_{p}^{p}$$

Sparse representation

 $\lambda \to 0$

◆ Sparse approximation

 $\lambda > 0$

Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)

Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, Defrise, de Mol 2004, Combettes, & Pesquet 2008 ...]

Algorithms

Global optimization

Iterative greedy algorithms

Principle	$\min_{x} \frac{1}{2} \ \mathbf{A}x - \mathbf{b}\ _{2}^{2} + \lambda \ x\ _{p}^{p}$	iterative decomposition $\mathbf{r}_i = \mathbf{b} - \mathbf{A}x_i$ • select new components • update residual	
Tuning quality/sparsity	regularization parameter λ	stopping criterion (nb of iterations, error level,) $\ x_i\ _0 \geq k \qquad \ \mathbf{r}_i\ \leq \epsilon$	
Variants	 choice of sparsity measure p optimization algorithm initialization 	•selection criterion (stagewise) •update strategy (orthogonal)	

Main greedy algorithms

$$\mathbf{b} = \mathbf{A}x_i + \mathbf{r}_i$$

$$\mathbf{A} = [\mathbf{A}_1, \dots \mathbf{A}_N]$$

	Matching Pursuit	OMP	Stagewise
Selection	$\Gamma_i := \arg\max_n \mathbf{A}_n^T \mathbf{r}_{i-1} $		$\Gamma_i := \{ n \mid \mathbf{A}_n^T \mathbf{r}_{i-1} > \theta_i \}$
	$\Lambda_i = \Lambda_{i-1} \cup \Gamma_i$	$\Lambda_i = \Lambda_{i-1} \cup \Gamma_i$	
Update	$x_i = x_{i-1} + \mathbf{A}_{\Gamma_i}^+ \mathbf{r}_{i-1}$	$x_i = \mathbf{A}_{\Lambda_i}^+ \mathbf{b}$	
	$\mathbf{r}_i = \mathbf{r}_{i-1} - \mathbf{A}_{\Gamma_i} \mathbf{A}_{\Gamma_i}^+ \mathbf{r}_{i-1}$	$\mathbf{r}_i =$	$\mathbf{b} - \mathbf{A}_{\Lambda_i} x_i$

MP & OMP: Mallat & Zhang 1993

StOMP: Donoho & al 2006 (similar to MCA, Bobin & al 2006)

Provably good algorithms

• Recoverable set for a given "inversion" algorithm

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
 - ◆ I-sparse

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
 - ◆ I-sparse
 - → 2-sparse

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
 - ◆ I-sparse
 - → 2-sparse
 - **→** 3-sparse ...

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
 - ◆ I-sparse
 - → 2-sparse
 - **→** 3-sparse ...

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
 - ◆ I-sparse
 - → 2-sparse
 - **→** 3-sparse ...

Recovery analysis for inverse problem b = Ax

- Recoverable set for a given "inversion" algorithm
- Level sets of L0-norm
 - ◆ I-sparse
 - → 2-sparse
 - **→** 3-sparse ...

Empirical facts

- Highly sparse vectors: always recovered by
 - Orthonormal Matching Pursuit
 - ◆ Basis Pursuit (LI minimization)
- Relatively sparse vectors: likely to be recovered

Empirical facts

- Highly sparse vectors : always recovered by
 - + Orthonormal Matching Pursuit
 - ◆ Basis Pursuit (LI minimization)
- Relatively sparse vectors: likely to be recovered

Empirical facts

- Highly sparse vectors : always recovered by
 - + Orthonormal Matching Pursuit
 - ◆ Basis Pursuit (LI minimization)
- Relatively sparse vectors: likely to be recovered

Brute force search

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

 $\min_{x} \|\mathbf{b} - \mathbf{A}x\|_{2}^{2} + \lambda \|x\|_{0}$

- Theorem (Davies et al, Natarajan)
 It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

 $\min_{x} \|\mathbf{b} - \mathbf{A}x\|_{2}^{2} + \lambda \|x\|_{0}$

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

 $\min_{x} \|\mathbf{b} - \mathbf{A}x\|_{2}^{2} + \lambda \|x\|_{0}$

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{b}$$

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \cdot \begin{pmatrix} x_1 \\ 0 \\ x_3 \end{pmatrix} = \mathbf{b}$$

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

$$\begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix} \cdot \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \mathbf{b}$$

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

$$\begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix} \cdot \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \mathbf{b}$$

$$\begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix}^{-1} \cdot \mathbf{b}$$

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Brute force search

$$\left[\begin{array}{cc} a_{11} & a_{13} \\ a_{21} & a_{23} \end{array}\right] \cdot \left(\begin{array}{c} x_1 \\ x_3 \end{array}\right) = \mathbf{b}$$

$$\begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix}^{-1} \cdot \mathbf{b}$$

Many n-tuples to try!

- Theorem (Davies et al, Natarajan)
 - It is NP-hard!
- Are there other more efficient alternatives?

Some 3D geometry

$$\mathbf{b} = \mathbf{A}x_0$$

Some 3D geometry

$$\mathbf{b} = \mathbf{A}x_0$$

Some 3D geometry

$$||x_0||_0 = 1$$

$$\{\mathbf{A}x = \mathbf{A}x_0\}$$

Some 3D geometry

$$||x_0||_0 = 1$$

Sparse solutions

$$\left\{ \|x\|_{1} \leq \|x_{0}\|_{1} \right\}$$

$$\left\{\mathbf{A}x = \mathbf{A}x_{\mathbf{0}}\right\}$$

Some 3D geometry

$$\mathbf{b} = \mathbf{A}x_0$$

$$||x_0||_0 = 1$$

Sparse solutions

$$\left\{ \|x\|_{1} \leq \|x_{0}\|_{1} \right\}$$

$$\{\mathbf{A}x = \mathbf{A}x_0\}$$

Some 3D geometry

$$\mathbf{b} = \mathbf{A}x_0$$

$$||x_0||_0 = 2$$

Sparse solutions

$$\left\{ \|x\|_{1} \leq \|x_{0}\|_{1} \right\}$$

$$\{\mathbf{A}x = \mathbf{A}x_0\}$$

Some 3D geometry

$$||x_0||_0 = 2$$

Sparse solutions

$$\left\{ \|x\|_{1} \leq \|x_{0}\|_{1} \right\}$$

 $\mathbf{b} = \mathbf{A}x_0$

$$x_0 = \arg\min_{x:\mathbf{A}x=\mathbf{b}} \|x\|_1$$

$$\{\mathbf{A}x = \mathbf{A}x_0\}$$

Some 3D geometry

$$||x_0||_0 = 3$$

Sparse solutions

$$\left\{ \|x\|_{1} \leq \|x_{0}\|_{1} \right\}$$

$$\{\mathbf{A}x = \mathbf{A}x_0\}$$

Equivalence between L0, L1, OMP

• Theorem : assume that $\mathbf{b} = \mathbf{A}x_0$

+ if
$$||x_0||_0 \le k_0(\mathbf{A})$$
 then $x_0 = x_0^*$

$$\star$$
 if $||x_0||_0 \le k_1(\mathbf{A})$ then $x_0 = x_1^{\star}$

where
$$x_p^{\star} = \arg\min_{\mathbf{A}x = \mathbf{A}x_0} \|x\|_p$$

- Donoho & Huo 01 : pair of bases, coherence
- Donoho & Elad, Gribonval & Nielsen 2003 : dictionary, coherence
- Tropp 2004: Orthonormal Matching Pursuit, cumulative coherence
- Candes, Romberg, Tao 2004: random dictionaries, restricted isometry constants

State of the art tools to

estimate $k_p(\mathbf{A})$

max over N(N-I) entries

N unit columns

$$\|\mathbf{A}_n\|_2 = 1$$

max over

$$\delta_k := \sup_{\sharp I \le k, \ c \in \mathbb{R}^k} \left| \frac{\|\mathbf{A}_I c\|_2^2}{\|c\|_2^2} - 1 \right|$$

$$\widehat{k}(\mathbf{A}) = (1 + 1/\mu)/2$$

 $\mu = \mu(\mathbf{A}) := \max_{k \neq l} |\langle \mathbf{A}_k, \mathbf{A}_l \rangle|$

$$\delta_{2k_0} < 1$$

$$\delta_{2k_1} < \sqrt{2} - 1$$

(Cumulative) coherence

Low cost "Coarse / pessimistic" Common beliefs

Isometry constants

Hard to compute "Almost sharp"?

MRI from incomplete measures

[from Candès, Romberg & Tao]

MRI from incomplete measures

MRI from incomplete measures

MRI from incomplete measures

Classical Shannon Sampling

« Sample first, think and compress afterwards »

Classical Shannon Sampling

« Sample first, think and compress afterwards »

Classical Shannon Sampling

« Sample first, think and compress afterwards »

• First model the data, then sample & compress

• First model the data, then sample & compress

Analog domain

Digital domain

First model the data, then sample & compress

Sparse model

$$y = \Phi x$$

and compression (~cheap)

$$z = \mathbf{K}y$$

A/D conversion Sparse recovery (~costly)

Analog domain Digital domain

 $\min \|x\|_1$, subject to $z = \mathbf{K}\Phi x$

Partial conclusions

- Sparsity helps solve ill-posed inverse problems (more unknowns than equations)
- Sparse approximation is NP-hard but efficient suboptimal algorithms (pursuits) exist
- If there is a sufficiently sparse solution, it is recovered by many of the heuristic algorithms
- This is the fundamental basis underlying the development of compressed sensing

Structure of the course

- Part I: Overview
- Part II: Algorithms, complexity & convergence
 - Lp minimization
 - Greedy Algorithms
- Part III: Recovery, stability, robustness
 - ◆ Null Space Properties and Lp minimization
 - ◆ Exact Recovery Condition and greedy algorithms
 - * Restricted Isometry Constants, stability and robustness
- Part IV: Dictionaries, Random Matrices and Compressed Sensing

