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Sparsity and Inverse Problems

® More unknowns than equations:

AZCO :Ailfl #)ZC() — 1

® Uniqueness of sparse solutions = identifiability
+ ifXg, X1 are “sufficiently sparse”,

+ then AZL’O — AZIZl — g = I

® If xg,x1 “sufficiently sparse”, identification with
+ Ll-minimization = convex problem
+ Greedy algorithms

® Robustness to “approximately sparse” and noise
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Overview

® Exact recovery
+ greedy algorithms
+ (non)convex Lp-minimization
+ comparisons

® Stability and robustness
+ Instance optimality for Lp-minimization
+ Restricted Isometry Property




Exact recovery




Usual sparsity measures

® LO-norm |zl = |ax|® = Hk, oy #0)
- support(z)

® [p-norms lz[lp == |z, 0 <p <1
k

® Constrained minimization

T, € argma}nHaij subjectto b = Az
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Empirical observation :
Lp versus LI

«— * .
L > b= Axg » T, = arg Axnililxo ||,
reference direct model inverse problem

Typical observation (e Chartrand 2007)  +extrapolation

P(z" = o)
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Proved Equivalence
between LO and LI

® “Empty” theorem :assume that b = Ax()
+ i [|1Zollo < k’o(A) then g =

+ if ||To]l0O § ]{Tl(A) L0

® Content = estimation of ky(A) andk;(A)

Donoho & Huo 2001 : pair of bases, coherence

Donoho & Elad 2003, Gribonval & Nielsen 2003 : dictionary, coherence
Candes, Romberg, Tao 2004 : random dictionaries, restricted isometry constants
Tropp 2004 :idem for Orthonormal Matching Pursuit, cumulative coherence

® What about :E;,O <p<l1l ?
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General sparsity measures

® Lp-norms |z|2:=) |z P.0<p <1
k

® f-norms! 2, =3 f(lanl)

® Constrained minimization

v = 23(b,A) € argmin |[z||; subject to b=Ax

When do we have z(Azg, A) = 0!
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Recovery analysis
for inverse problem b = Az

® Holy grail = characterize set of “recoverable” coefficients
{x € RN,:B’}(A:E, A) ==z}
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Recovery analysis
for inverse problem b = Az

® Holy grail = characterize set of “recoverable” coefficients
{x € RN,x’}(Aa:, A) ==z}

® Practice : find “simple” recovery conditions
+ |-sparse
+ 2-sparse




Some “simple” recovery

conditions
“recoverable supports” = “recoverable sparsity”
subsets [ C [1, N]| integers k
such that such that
supp(z) := {k,zp #0} C I lzollo < &

T &
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Exact recovery:

Greedy algorithms




Objective

® Given
+ Dictionary A,
+ support set |

® Goal = understand when MP (and variants) is
guaranteed to only select atoms in |, given any

input vector b = Ajx;

® Analysis: based on operator norms




Operator norms

Linear operator L : £¥ — /£

L
Operator norm ||L||,—, = sup Ll
w20 ||Z]p

Adjoint operator v, y(Lx, y> — <$, L*y>
For real-valued matrices L™ = LT

Duality relation:for all L, 1 <p¢<o

HLHp—>q — HLTHq’—>p’




Operator norms (ctd)

® When p=qg=2
+ Singular Value Decomposition (SVD)
vv' =U"U = Idy,

L=UYV vvT = vTV = Idy

E:diag(ai), o1 > ... >0

+ Operator norm

|ILfl2—2 = [[X]l2—2 = Omax(w)

+ Proof: exercise




Operator norms (ctd)

® When p=I,for any g

+ Columns

L=[Li,...,Ly]

+ Operator norm

L11.q = max | Ly,

+ Proof: exercise




Exact Recovery
Condition for *MP

® Theorem: consider any weak/stagewise
greedy algorithm that iterates

<% a selection of atoms in a set such that
inf ‘AZTI'i_ly > tSUp ‘Agl‘i_l‘
n

lel’;
* an update of the residual suchthat
v,

r; € span(A,,n € U;_;T)

+ Assume = ERC(I)

+ Conclude: given input b = A jx;,the algorithm
is guaranteed to only select atoms in I: Vi,1'; C [
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ERC: proof

® Selection rule implies

inf ’AlTI'i_l‘ 2 tSllp ‘Agri_ﬂ — tHATri—l HOC
lel’; n

® |t is sufficient to prove by induction that

sup |[A] 1| = [|Aferi—1]loo < t|A T 1 |0
nél

since this implies n ¢ [ = n ¢ I,

® Equivalently, we will just prove by induction
| ATerioiloo
|AT i1l
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ERC: proof (ctd)

AT
¢ Lemma sup H {TrHOO = sup ||AT A,
rcspan(Ary) HAIrHoo né¢l

I‘:A]C

|ATer|lo l | AT Arc]|o l |A7-Ar(ATAL) d]lo

AT Al Il o

< AL AT(ATAD)  oomoo
= (AT AD) AT Agellim1 = [[ATAgell1-1
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ERC: proof (end)

Fori=l TI;_1 € SpaIl(A[)

By induction, if this holds true at step i we
obtain

JATeri1]lo +
< sup|lAT A <t
HA,{ri—lHoo — ngl; H 1 n||1

It follows that 1'; C 1
By the update rule

r; € span(A,,n € Ué-:lFi) C span(Ay)
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Exact recovery:

Lp minimization




Null space

® Null space = kernel

zeENA)S Az =0

® Particular solution vs general solution
+ particular solution

Ax=Db
+ general solution

Ax'=bs 2 —ze N(A
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Exact recovery:
necessary condition

® Notations
+ index set /
+ vector z
+ restriction <] — (Zz')z'EI

® Assume there exists 2 & N(A) with
lz1llf > |lzrel 1
o Define b := Az; = A(—zy¢)

® The vector £ is supported in | but is not the
minimum norm representation of b
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Exact recovery:
sufficient condition

® Assume quasi-triangle inequality

Vo, ylle +ylly < llzlly + llyll s

® Consider x with support set [ and x’with Az’ = Ax
® Denote 2:=2' —x € N(A) and observe

'l = [l + 2]l = Iz + 2)1llf + [z + 2)1e ]l 5
z+ 21l 4 lzrel s

>zl — zall g + llzre
® Conclude:

If lzz<llf > llz1lly whenz € N (A) then [ is recoverable

’3 . IRISA




Recoverable supports :
the “Null Space Property” (1)

® Theorem | [Donoho & Huo 2001 for LI, G. & Nielsen 2003 for Lp]
+ Assumption |:sub-additivity (for quasi-triangle inequality)

fla+b) < fla) + f(b),Va,b

Assumption 2:

Conclusion: i‘f recovers every & supported in [/

The result is sharp: if NSP fails on support | there is at
least one failing vector x supported in |
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From “recoverable” supports to
““‘sparse’’ vectors

S \

Trellis of supports

[1, V]

.7
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From “recoverable” supports to
““‘sparse’’ vectors

L) q
<D l
n\

supports:

[1, V]

Recoverable supports
are nested NSP(/) /

kr(A) 1l = [|zlo

Sduftticiently sparse, I "
- v At least one failing support
guaranteed recovery | -
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Recoverable sparsity levels:
the “Null Space Property” (2)

® Corollary | [Donoho & Huo 2001 for L1, G. Nielsen 2003 for Lp]
+ Definition :

I, = index of k largest components of z

+ Assumption :

4 N )

SP
HZIka < HZI,‘;Hf when 2 € N(A),z # 0

o J
*
+ Conclusion: ZIZ‘f recovers every XU with HxHO < k

+ The result is sharp: if NSP fails there is at least one
failing vector x with ||Z]lo = k
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Interpretation of NSP

® Geometry in coefficient space:
+ consider an element z of the Null Space of A
+ order its entries in decreasing order

\

\
—>

Il
+ the mass of the Iargést k-terms should not exceed that
of the tail || 21, ||r < ||21¢]|

All elements of the null space must be rather “flat”

P
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Geometric picture




Greedy vs L1




ERC implies NSP

If columns of A;
linearly independent

NSP(l, ,t)
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ERC implies NSP: proof

® Assume ERC()) sup AT Al <t
+ linear independence  n¢I

e Consider z € N(A)
+ write A[Z[ — —A[cZ[c
+ apply pseudo-inverse <] = —A}I_A](:Z[c

|21lly < [JAT Agellimy - llzrelly < tllzze s

3 . IRISA




Greedy vs LI:summary

If *MP is guaranteed to recover all vectors with

support I, where the atoms in | are linearly
independent, then L1 has the same guarantee

If *MP recovers all k-sparse vectors, then LI has
the same guarantee

kavp(A) < k1(A), VA

® Warning: there are support sets |
+ not recovered by LI, while recovered by MP
+ ...but columns of A; are linearly dependent.
+ Example:I =1, N| when Aismx N




Greedy vs L1: summary

) |
‘D.UQ

supports:

[1, V]

-

il = |lzllo

- >
Sutticiently sparse, I -
U S At least one failing support
guaranteed LI recovery | -
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Greedy vs L1: summary

) |
‘D.UQ

supports:

L. |[17 N ]]
*  Recoverable supports
al;e’ nested ERC(/)
*
— g
S,un%@\emui\'/ Sparse, | N
| AN At least one failing support
guaranteed LI recovery | -
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Greedy vs L1: summary

) J
‘h.:l@

supports:

[1, V]

LS
Recoverable supports
are not'nested ERC(/) /
X *

k’*MP(A)|

e
Qutticiently sparse, I -
) 24 At least one failing support
guaranteed L | recovery -~
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Critical sparsity levels for
different Lp norms

Back to empirical observations + extrapolation :

P(z" = xo) o /a:* = arg min |z,

P Ax=Ax




Lp better than L1 (1)

e Theorem 2 [G. Nielsen 2003]
+ Assumption |: sub-additivity of sparsity measures f, g

fla+b) < f(a) + f(b),Va,b
f(t)

+ Assumption 2: the function t — —= is hon=increasing \

g(t)
+ Conclusion: kg(A) < kf(A),\V/A

Minimizing HQU H f can recover vectors which are less sparse
than required for guaranteed success when minimizing ||z ||,




Lp better than LI (2)

® Example
+ sparsity measures f(t) =t¥, g(¢)

+ sub-additivity
0+ b < |af? + [b?, Ya,b,0 < p < 1

f(t)
g(t)

+ function — tP~7 is non-increasing

+ therefore

k1(A) < kg (A) < ky(A) < ko(A), VA
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Lp better than LI: proof

® |) Since f/g non-decreasing:
212 2220

® 2) Similarly
z1>...2zy >0

[k:1:]€
I, =k+1:N

® 3) Conclusion :if NSP(g,t,k) then NSP(f,z,k)




Lp better than L1 (2)

® At sparsity levels where L1 is guaranteed to
“succeeds”, all Lp p<=1 is also guaranteed to
succeed

x _ :
P(x A ZCO) A : /33; — 5 A;Iiljgxo HszHp

Highly sparse
representations are
independent of the
(admissible) sparsity

measure




Lp better than L1 (3)

® + Lp p<I can succeed where LI fails
+ How much improvement ? Quantify ]-Cp(A) 4

® -Lp p<I :nonconvex, has many local mimima
+ Better recovery with Lp principle
+ Challenge :actual provably good algorithms!?

P(z~ = o) - — arg mlgl |||,
\ ”I“ O




Stability and robustness




Stability

Exactly sparse data Real data (from source separation)
A SR A .




Stability

® Exact recovery: b = Ax

+ sparsity assumption ||z||o < k,(A) <m
+ recovery: z,(b)=ux

® Stability: relax sparsity assumption
+ Dbest k-term approximation

— Inf _
o () HyIHI;SkHw Y|

+ goal = stable recovery = instance optimality
|z, (b) —z|| < C - ox(x)
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Instance optimality for
Lp minimization

® Assumption:

4 gp )

lznllp <t-llzrgllp when 2 € M(A), 2 #£0

U J

® Conclusion: instance optimality for all x

|lzp(b) — x|l < C(t) - ow(2);




Robustness

e Noiseless model b = Ax
® Noisy model b=Ax+e

4+  measurement noise
+ modeling error
4+ numerical inaccuracies ...

® Goal: robust estimation

|25 (b) — || < Clle]| + Coy ()

p

: restricted isometry property




Restricted Isometry Property

nel fl <k

 Definition / x\
A ] ALL 1

N columns max over [I AIsubsets |
NI
KN — k)

| B 1Al
e Computation ? o P | el

+ naively: combinatorial
+ open question: NP ? NP-complete ?
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RIP, stability, robustness

[Candes 2008] t:=125/(1—-9)

® | |I-recovery of k-sparse vectors, robust to noise
when b = Az +n ok (A) < V2 —1~0.414

+  Foucart-Lai 2008: Lp with p<l,and d2x(A) < 0.4531
+  Chartrand 2007, Saab & Yilmaz 2008: other RIP condition for p<I

+ G, Figueras & Vandergheynst 2006: robustness with f-norms
pe = IRISA




How sharp is the RIP

condition ?

® The Null Space Property for Lp
+ “algebraic” + sharp property, only depends on N (A)
+ invariant by linear transforms A — BA

e The RIP(k, 0) condition is “metric” ... and not invariant
+ even with “rescaled” RIP

RIP(k,0.4) | NSP(k, %)




When does 02:(A) <4 imply k¥ < Fk,(A) ?
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When does 02:(A) <4 imply k¥ < Fk,(A) ?
p
11

Candeés 2008 Foucart & Liai 2008

0.414 0.4531

49




When does 92:(A) < imply &k <ky(A) ?

p
11

G. Nielsen 2003

0 0.414 0.4531 1

4 = IRISA




When does 92:(A) < imply &k <ky(A) ?

p
11

G. Nielsen 2003

0 0.414 0.4531  0.707
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When does 92:(A) < imply &k <ky(A) ?

p
11

hﬂ#m
G. Nielsen 2003

when 2k > N-d
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When does 92:(A) < imply &k <ky(A) ?
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G. Nielsen 2003
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When does 92:(A) < imply &k <ky(A) ?

p
11

Explicit constructions
Successful dictionaries
+ failing dictionaries

5 (d = N-I)
hrﬁlt'h-

T
G. Nielsen 2003 AA" = Id
when 2k > N-d
— ; 0
0 0.414 04531  0.707 1

4 = IRISA




Summary

® Recovery conditions based on humber of
nonzero components [zlo

kaatp(A) < K1 (A) < ky(A) < kg(A) < ko(A), YA
® Warning:
+ there often exists vectors beyond these critical
sparsity levels, which are recovered
+ there often exists vectors beyond these critical

sparsity levels, where the successful algorithm is not
the one we would expect
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