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Sparsity and Inverse Problems
• More unknowns than equations:

• Uniqueness of sparse solutions = identifiability
!  if            are “sufficiently sparse”, 
! then

• If           “sufficiently sparse”, identification with 
! L1-minimization = convex problem
! Greedy algorithms

• Robustness to “approximately sparse” and noise

x0, x1
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Ax0 = Ax1 !⇒ x0 = x1

Ax0 = Ax1 ⇒ x0 = x1

x0, x1



Overview

• Exact recovery 
! greedy algorithms
! (non)convex Lp-minimization
! comparisons

• Stability and robustness
! Instance optimality for Lp-minimization
! Restricted Isometry Property

3



Exact recovery



Usual sparsity measures
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• L0-norm

• Lp-norms

• Constrained minimization

‖x‖0 :=
∑

k

|xk|0 = !{k, xk "= 0}

b = Axx!
p ∈ arg min

x
‖x‖p subject to 

support(x)

=

‖x‖p
p :=

∑

k

|xk|p, 0 ≤ p ≤ 1



Empirical observation :
Lp versus L1
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‖x0‖0

P (x! = x0)

x!
p = arg min

Ax=Ax0
‖x‖p

p=1
p=1/2

x0 b := Ax0
reference direct model inverse problem

Typical observation (e.g. Chartrand 2007) +extrapolation

k1(A) k1/2(A) k0(A)



Proved Equivalence 
between L0 and L1

• “Empty” theorem : assume that

! if                     

! if

• Content = estimation of             and 
! Donoho & Huo 2001 :                                                  pair of bases, coherence
! Donoho & Elad 2003, Gribonval & Nielsen 2003 :             dictionary, coherence
! Candes, Romberg, Tao 2004 : random dictionaries,              restricted isometry constants
! Tropp 2004 : idem for Orthonormal Matching Pursuit,         cumulative coherence

• What about                               ? 
7

b = Ax0

then x0 = x!
0

x0 = x!
1

x!
p, 0 ≤ p ≤ 1

‖x0‖0 ≤ k0(A)
‖x0‖0 ≤ k1(A)

k0(A) k1(A)



General sparsity measures
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• Lp-norms

• f-norms!

• Constrained minimization

b = Axsubject to 

‖x‖f :=
∑

k

f(|xk|)

x!
f = x!

f (b,A) ∈ arg min
x

‖x‖f

xk

p=0

p=1f(xk)

When do we have                            ?x!
f (Ax0,A) = x0

‖x‖p
p :=

∑

k

|xk|p, 0 ≤ p ≤ 1



• Holy grail = characterize set of “recoverable” coefficients

Recovery analysis
for inverse problem
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b = Ax

{x ∈ RN , x!
f (Ax,A) = x}

recoverable



• Holy grail = characterize set of “recoverable” coefficients

• Practice : find “simple” recovery conditions 

Recovery analysis
for inverse problem

9

b = Ax

{x ∈ RN , x!
f (Ax,A) = x}

recoverable



• Holy grail = characterize set of “recoverable” coefficients

• Practice : find “simple” recovery conditions 
! 1-sparse

Recovery analysis
for inverse problem
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b = Ax

‖x‖0 ≤ 1

{x ∈ RN , x!
f (Ax,A) = x}

recoverable



• Holy grail = characterize set of “recoverable” coefficients

• Practice : find “simple” recovery conditions 
! 1-sparse
! 2-sparse

Recovery analysis
for inverse problem
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b = Ax

‖x‖0 ≤ 1

{x ∈ RN , x!
f (Ax,A) = x}

recoverable

‖x‖0 ≤ k



Some “simple” recovery 
conditions
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I ⊂ !1, N"

Support

“recoverable supports” = 
subsets

such that

supp(x) := {k, xk != 0} ⊂ I

x ∈

Sparsity level

“recoverable sparsity” = 
integers k 

such that

recoverable

‖x0‖0 ≤ k



Exact recovery: 
Greedy algorithms



Objective

• Given
! Dictionary A, 
! support set I 

• Goal = understand when MP (and variants) is 
guaranteed to only select atoms in I, given any 
input vector

• Analysis: based on operator norms 
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b = AIxI



Operator norms

• Linear operator

• Operator norm

• Adjoint operator

• For real-valued matrices

• Duality relation: for all L,
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1
p

+
1
p′ = 1;

1
q

+
1
q′ = 1

1 ≤ p, q ≤ ∞

L : !p → !q

‖L‖p→q = sup
x"=0

‖Lx‖q

‖x‖p

∀x, y〈Lx, y〉 = 〈x,L!y〉
L! = LT

‖L‖p→q = ‖LT ‖q′→p′



Operator norms (ctd)

• When p=q=2
! Singular Value Decomposition (SVD)

! Operator norm

! Proof: exercise
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UUT = UT U = Idm

V V T = V T V = IdN

Σ = diag(σi), σ1 ≥ . . . ≥ 0 m < N

m ≥ N

L = UΣV

‖L‖2→2 = ‖Σ‖2→2 = σmax(L)



Operator norms (ctd)

• When p=1, for any q
! Columns

! Operator norm

! Proof: exercise
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L = [L1, . . . ,LN ]

‖L‖1→q = max
n

‖Ln‖q



• Theorem: consider any weak/stagewise 
greedy algorithm that iterates

" a selection of atoms in a set      such that

" an update of the residual such that

! Assume = 

! Conclude: given input                   , the algorithm 
is guaranteed to only select atoms in I:

Exact Recovery 
Condition for *MP
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b = AIxI

ri ∈ span(An, n ∈ ∪i
j=1Γi)

sup
n/∈I

‖A+
I An‖1 < t

inf
l∈Γi

|AT
l ri−1| ≥ t sup

n
|AT

nri−1|

Γi

∀i,Γi ⊂ I

ERC(I)



ERC: proof

• Selection rule implies

• It is sufficient to prove by induction that

• Equivalently, we will just prove by induction
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inf
l∈Γi

|AT
l ri−1| ≥ t sup

n
|AT

nri−1| = t‖AT ri−1‖∞

sup
n/∈I

|AT
nri−1| = ‖AT

Icri−1‖∞ < t‖AT ri−1‖∞

since this implies n /∈ I ⇒ n /∈ Γi

‖AT
Icri−1‖∞

‖AT
I ri−1‖∞

< t



ERC: proof (ctd)

• Lemma

• Proof: 
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sup
r∈span(AI)

‖AT
Icr‖∞

‖AT
I r‖∞

= sup
n/∈I

‖A+
I An‖1

r = AIc c = (AT
I AI)−1d

‖AT
Icr‖∞

‖AT
I r‖∞

=
‖AT

IcAIc‖∞
‖AT

I AIc‖∞
=

‖AT
IcAI(AT

I AI)−1d‖∞
‖d‖∞

≤ ‖AT
IcAI(AT

I AI)−1‖∞→∞
= ‖(AT

I AI)−1AT
I AIc‖1→1 = ‖A+

I AIc‖1→1



ERC: proof (end)

• For i=1

• By induction, if this holds true at step i we 
obtain

• It follows that

• By the update rule
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‖AT
Icri−1‖∞

‖AT
I ri−1‖∞

≤ sup
n/∈I

‖A+
I An‖1 < t

Γi ⊂ I

ri−1 ∈ span(AI)

ri ∈ span(An, n ∈ ∪i
j=1Γi) ⊂ span(AI)



Exact recovery: 
Lp minimization



Null space

• Null space = kernel

• Particular solution vs general solution
! particular solution

! general solution
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z ∈ N (A)⇔ Az = 0

Ax = b

Ax′ = b⇔ x′ − x ∈ N (A)



Exact recovery: 
necessary condition

• Notations
! index set I
! vector z
! restriction

• Assume there exists                      with 

• Define

• The vector      is supported in I but is not the 
minimum norm representation of 
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z ∈ N (A)
zI = (zi)i∈I

‖zI‖f > ‖zIc‖f

b := AzI = A(−zIc)
zI

b



Exact recovery: 
sufficient condition

• Assume quasi-triangle inequality

• Consider x with support set I and x’ with 

• Denote                                        and observe

• Conclude:
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‖x′‖f = ‖x + z‖f = ‖(x + z)I‖f + ‖(x + z)Ic‖f

= ‖x + zI‖f + ‖zIc‖f

≥ ‖x‖f − ‖zI‖f + ‖zIc‖f

∀x, y‖x + y‖f ≤ ‖x‖f + ‖y‖f

Ax′ = Ax

z := x′ − x ∈ N (A)

If                      when                  then     is recoverable ‖zIc‖f > ‖zI‖f Iz ∈ N (A)



Recoverable supports :
the “Null Space Property” (1)

• Theorem 1 [Donoho & Huo 2001 for L1, G. & Nielsen 2003 for Lp]
! Assumption 1: sub-additivity (for quasi-triangle inequality)

! Assumption 2:

! Conclusion:        recovers every     supported in 

! The result is sharp: if NSP fails on support I there is at 
least one failing vector x supported in I

24

f(a + b) ≤ f(a) + f(b),∀a, b

x Ix!
f

z ∈ N (A), z "= 0‖zI‖f < ‖zIc‖f
NSP

when



From “recoverable” supports to 
“sparse” vectors
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∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

. . .

Trellis of supports



“Bad 
supports”

From “recoverable” supports to 
“sparse” vectors

25

∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Recoverable supports 
are nested        NSP(I)
. . .

Trellis of supports



“Bad 
supports”

From “recoverable” supports to 
“sparse” vectors

25

∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Recoverable supports 
are nested        NSP(I)

!I = ‖x‖0

. . .

Trellis of supports



“Bad 
supports”

From “recoverable” supports to 
“sparse” vectors

25

∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Recoverable supports 
are nested        NSP(I)

Sufficiently sparse,
guaranteed recovery

At least one failing support

!I = ‖x‖0

. . .

Trellis of supports

kf (A)



Recoverable sparsity levels:
the “Null Space Property” (2)

• Corollary 1 [Donoho & Huo 2001 for L1, G. Nielsen 2003 for Lp]
! Definition :

! Assumption :

! Conclusion:        recovers every     with 

! The result is sharp: if NSP fails there is at least one 
failing vector x with
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xx!
f

z ∈ N (A), z "= 0
NSP

when

index of k largest components of zIk =

‖zIk‖f < ‖zIc
k
‖f

‖x‖0 ≤ k

‖x‖0 = k



Interpretation of NSP

• Geometry in coefficient space:
! consider an element z of the Null Space of A
! order its entries in decreasing order 

! the mass of the largest k-terms should not exceed that 
of the tail

27

‖zIk‖f < ‖zIc
k
‖f

k

All elements of the null space must be rather “flat”



Geometric picture

28



Greedy vs L1



ERC implies NSP
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sup
n/∈I

‖A+
I An‖1 < tERC(I)

z ∈ N (A), z "= 0
   NSP(I,   , t)

when

!1

‖zI‖1 ≤ t · ‖zIc‖1

If columns of   
linearly independent 

AI



ERC implies NSP: proof

• Assume ERC(I)                                           
+ linear independence

• Consider 

! write

! apply pseudo-inverse
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sup
n/∈I

‖A+
I An‖1 < t

z ∈ N (A)

AIzI = −AIczIc

zI = −A+
I AIczIc

‖zI‖1 ≤ ‖A+
I AIc‖1→1 · ‖zIc‖1 ≤ t‖zIc‖1



Greedy vs L1: summary

• If *MP is guaranteed to recover all vectors with 
support I, where the atoms in I are linearly 
independent, then L1 has the same guarantee

• If *MP recovers all k-sparse vectors, then L1 has 
the same guarantee

• Warning: there are support sets I 
! not recovered by L1, while recovered by MP
! .... but columns of       are linearly dependent. 
! Example: I =             when A is m x N  

32

!1, N"
AI

k*MP(A) ≤ k1(A),∀A



“Bad 
supports”

Greedy vs L1: summary

33

∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Sufficiently sparse,
guaranteed L1 recovery

At least one failing support

!I = ‖x‖0

. . .

Trellis of supports

k1(A)



“Bad 
supports”

Greedy vs L1: summary

33

∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Recoverable supports 
are not nested  ERC(I)

Sufficiently sparse,
guaranteed L1 recovery

At least one failing support

!I = ‖x‖0

. . .

Trellis of supports

k1(A)



“Bad 
supports”

Greedy vs L1: summary

33

∅ !1, N"

{1}
{2}

{N}
. . .

{1, 2}
{1, 3}

. . .
. . .

. . .

. . .

⊂

Recoverable supports 
are not nested  ERC(I)

Sufficiently sparse,
guaranteed L1 recovery

At least one failing support

!I = ‖x‖0

. . .

Trellis of supports

k1(A)k*MP(A)



L1 vs Lp



Critical sparsity levels for 
different Lp norms
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‖x0‖0

P (x! = x0) x!
p = arg min

Ax=Ax0
‖x‖p

p=1
p=1/2 p=0

Back to empirical observations + extrapolation : 

Do we always have                                                       ?

k1(A) k1/2(A) k0(A)

k1(A) ≤ kp(A) ≤ k0(A), 0 ≤ p ≤ 1



 Lp better than L1 (1) 

• Theorem 2 [G. Nielsen 2003]
! Assumption 1: sub-additivity of sparsity measures   ,

! Assumption 2: the function               is non-increasing

! Conclusion:

36

f g

t !→ f(t)
g(t)

Minimizing           can recover vectors which are less sparse 
than required for guaranteed success when minimizing

‖x‖f
‖x‖g

kg(A) ≤ kf (A),∀A

f(a + b) ≤ f(a) + f(b),∀a, b



Lp better than L1 (2)

• Example
! sparsity measures

! sub-additivity

! function                       is non-increasing

! therefore
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f(t) = tp, g(t) = tq, 0 ≤ p ≤ q ≤ 1

f(t)
g(t)

= tp−q

|a + b|p ≤ |a|p + |b|p,∀a, b, 0 ≤ p ≤ 1

k1(A) ≤ kq(A) ≤ kp(A) ≤ k0(A),∀A



 Lp better than L1: proof 

• 1) Since f/g non-decreasing:

• 2) Similarly

• 3) Conclusion : if NSP(g,t,k) then NSP(f,t,k)
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z1 ≥ z2 ≥ 0

z1 ≥ . . . ≥ zN ≥ 0

f(z1)
g(z1)

≤ f(z2)
g(z2)

‖z1:k‖f

‖z1:k‖g
≤ ‖zk+1:N‖f

‖zk+1:N‖g

Ik = 1 : k

Ic
k = k + 1 : N

‖zIk‖f

‖zIc
k
‖f

≤ ‖zIk‖g

‖zIc
k
‖g



Lp better than L1 (2)

• At sparsity levels where L1 is guaranteed to 
“succeeds”, all Lp p<=1 is also guaranteed to 
succeed 

39

‖x0‖0

P (x! = x0) x!
p = arg min

Ax=Ax0
‖x‖p

p=1
p=1/2 p=0Highly sparse 

representations are 
independent of the 
(admissible) sparsity 

measure

k1(A) k1/2(A) k0(A)



Lp better than L1 (3)

• + Lp p<1 can succeed where L1 fails
! How much improvement ? Quantify               ? 

• - Lp  p<1 : nonconvex, has many local mimima
! Better recovery with Lp principle
! Challenge : actual provably good algorithms?
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‖x0‖0

P (x! = x0) x!
p = arg min

Ax=Ax0
‖x‖p

p=1
p=1/2 p=0

Lp better than L1: 
compressed sensing 

with fewer 
measurements ?

k1(A) k1/2(A) k0(A)

kp(A)



Stability and robustness



Stability

42

Exactly sparse data Real data (from source separation) 



Stability

• Exact recovery:

! sparsity assumption
! recovery:

• Stability: relax sparsity assumption
! best k-term approximation

! goal = stable recovery = instance optimality
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b = Ax

‖x‖0 ≤ kp(A) < m
x!

p(b) = x

‖x!
p(b)− x‖ ≤ C · σk(x)

σk(x) = inf
‖y‖0≤k

‖x− y‖



Instance optimality for 
Lp minimization

• Assumption:

• Conclusion: instance optimality for all x
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z ∈ N (A), z "= 0
   NSP(k,   ,t)

when

!p

‖zIk‖p
p ≤ t · ‖zIc

k
‖p

p

‖x!
p(b)− x‖p

p ≤ C(t) · σk(x)p
p

C(t) := 2
1 + t

1− t



Robustness

• Noiseless model

• Noisy model
! measurement noise
! modeling error
! numerical inaccuracies ...

• Goal: robust estimation

• Tool: restricted isometry property
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b = Ax
b = Ax + e

‖x!
p(b)− x‖ ≤ C‖e‖+ C ′σk(x)



Restricted Isometry Property

• Definition

• Computation ? 
! naively: combinatorial
! open question: NP ? NP-complete ?

46

A
N columns AI

max over                    subsets I

δk := sup
!I≤k, c∈Rk

∣∣∣∣
‖AIc|‖2

2

‖c‖2
2

− 1
∣∣∣∣

n ∈ I, !I ≤ k

N !
k!(N − k)!



RIP, stability, robustness
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• L1-recovery of k-sparse vectors, robust to noise                    
when

! Foucart-Lai 2008: Lp with p<1, and
! Chartrand 2007, Saab & Yilmaz 2008: other RIP condition for p<1
! G., Figueras & Vandergheynst 2006: robustness with f-norms

RIP(k,   )

z ∈ N (A), z "= 0
   NSP(k,   ,t)

when

[Candès 2008]

b = Ax + n

δ

!1

δ2k(A) ≤ δ

δ2k(A) <
√

2− 1 ≈ 0.414

δ2k(A) < 0.4531

t :=
√

2δ/(1− δ)

‖zIk‖1 ≤ t · ‖zIc
k
‖1



How sharp is the RIP 
condition ?

• The Null Space Property for Lp
! “algebraic” + sharp property, only depends on 
!  invariant by linear transforms 

• The RIP(k,   ) condition is “metric” ... and not invariant
! even with “rescaled” RIP

48

N (A)
A→ BA

δ

NSP(k,     )

BA

RIP(k, 0.4)

A

!p



When does                  imply                ?

49

p

0

1

δ
1

δ2k(A) < δ k ≤ kp(A)



When does                  imply                ?

49

p

0

1

0.414

Candès 2008

δ
1

δ2k(A) < δ k ≤ kp(A)



When does                  imply                ?

49

p

0

1

0.45310.414

Candès 2008 Foucart & Lai 2008

δ
1

δ2k(A) < δ k ≤ kp(A)



G. Nielsen 2003

When does                  imply                ?
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p

0

1

0.45310.414

Candès 2008 Foucart & Lai 2008
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1

δ2k(A) < δ k ≤ kp(A)



G. Nielsen 2003

When does                  imply                ?

49

p

0

1

0.4531 0.7070.414

Candès 2008 Foucart & Lai 2008

  G. & Davies 2008

δ
1

δ2k(A) < δ k ≤ kp(A)



G. Nielsen 2003

 
  For tight frames

When does                  imply                ?
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δ

AAT = Id

Ad

N

when 2k > N-d

1

δ2k(A) < δ k ≤ kp(A)
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  For tight frames

When does                  imply                ?
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Explicit constructions 
Successful dictionaries 

+ failing dictionaries  
( d = N-1)

G. Nielsen 2003

 
  For tight frames

When does                  imply                ?

49

p

0

1

0.4531 0.7070.414
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  G. & Davies 2008

δ

AAT = Id

Ad

N

when 2k > N-d

1

δ2k(A) < δ k ≤ kp(A)



Summary

• Recovery conditions based on number of 
nonzero components

• Warning: 
! there often exists vectors beyond these critical 

sparsity levels, which are recovered
! there often exists vectors beyond these critical 

sparsity levels, where the successful algorithm is not 
the one we would expect
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k*MP(A) ≤ k1(A) ≤ kp(A) ≤ kq(A) ≤ k0(A),∀A

‖x‖0


