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Agenda

® Recovery conditions based on humber of
nonzero components ||x||q

ke (A) < ki (A) < kp(A) < ky(A) < ko(A), VA
e Question
+ what is the order of magnitude of these nhumbers ?
+ how do we estimate them in practice !

® An element:
+ if AismxN,then ko(A) < |m/2]
+ this is indeed an equality except for almost all
matrices, in the sense of Lebesgue measure in R"™"
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Scenarios

® Range of “choices” for the matrix A
+ imposed by physics of inverse problems (ex:
convolution operator)
+ chosen signal dictionary for sparse modeling (ex:
union of wavelets + curvelets + spikes)
+ designed Compressed Sensing matrix (ex: random
Gaussian matrix)

® Estimation of the recovery regimes
+ coherence for deterministic matrices
+ typical results for random matrices




Deterministic matrices
and coherence

¢ Lemma
4+ Assume normalized columns ||Az||2 .
4+ Define coherence M= T?QJX ‘Ai A;
4+ Consider index set | of size I <k
+ Then for any coefficient vector C € R!

A 2
1—(k—1p< [Arc]; <14 (k-1Dp

lell2
+ In other words dor < (2k — 1)u




Consequence

® Since d2x < i+ (2k — 1) we obtain 025 < 0
as soon as
k< (146/p) /2

® Combining with best known RIP condition
for stable LI recovery 0 ~ 0.4531

k1(A) > | (1+0.4531/1)/2)

® |n fact, can prove with other techniques that
ko (A) > kq (A) > L(l + 1/M)/2J [G. Nielsen 2003]
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Observation

® Assume the m x N matrix A has normalized
columns and contains an orthonormal basis

® Then its coherence is at least

1
w> —

NG

® The bounds are therefore, at best, of the
order

(14 vm)/2] <Eki(A) < ko(A) < |m/2]

i . IRISA




Example : Dirac-Fourier
dictionary

Fourierlmatrix in dimension m = r
F,, = — - (exp(—2tmkn n<m

2

Dirac comb is r-sparse ] = iéer[n]
£=0

Poisson formula F,,,c = c

Dictionary A = [Id,,,, —F,,,|
+ null space element z = |¢, ¢| has r nonzero entries,

all of equal magnitude.
+ for k =r+l,and | a set with k nonzero entries of z:

lzrli=7r+1>|lzre|1 =7r—1
+ |t follows that

kl(A) S T =

7




Example: convolution
operator

e Deconvolution problem Yy = h xs + €

re-expressed in matrix-vector form as b=Ax+e
A =Toeplitz or circulant matrix [Aq,..., Ay]

An(i) = h(i = n)
convention

|AA3 =3 h(i)? =1

coherence: given by autocorrelation, can be large
_ T _ 7
p=max A, A, = maxhx* h({)
n#n’ 20
recovery results
< worst case = close spikes, usually difficult and not robust

< results assuming distance between spikes [Dossal]




Example: source separation

Time-domain model b(%) = Ax(t),Vt
Time-frequency domain model (STFT)
B(t, f) = AX(t, f), ¥, f

Minimum Lp solution [ofill & Zibulevsky, Vincent]
X(t, f) = argmin || X (¢, f)l|

Reconstruction (inverse STFT) Z(?)

2x3 case (stereophonic, three sources)
+ |-dimensional null space, compute NSP constants
+ instance optimality guarantees: | X(t, f) — X(t, /)|l < Co1(X(2, f))
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Random matrix scenario

® Deterministic matrix,suchas . ® “Generic” (random) dictionary
Dirac-Fourier dictionary : [Candes & al,Vershynin, ...]

N=2m N

N,
k :
m | [ f A m ar, ~ P(a), i.i.d.

® |sometry constants

T On (1) g2imnt/m if m > Cklog N/k

® Coherence then P(dy, <vV2—1)~1

p=1/y/m

Recovery regimes
ki1(A) ~ 0.914y/m : EL(A) m
ko (A) > 0.5v/m : 1

: e IRISA
[Elad & Bruckstein 2002] [Donoho & Tanner 2009] —

~ with high
2e log N/m probability




Compressed sensing

® Approach = acquire some data y with a
limited number m of (linear) measures,
modeled by a measurement matrix b ~ Ky

® Key hypotheses

+ Sparse model: the data can be sparsely Yy~ Pr
represented in some dictionary or(x) < |||

+ The overall matrix A = K® leads to robust +
stable sparse recovery, e.g. d21(A) < 1

® Reconstruction = sparse recovery algorithm
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Compressed Sensing

e Sparse model: @ (synthesis .... or analysis)
+ should fit well the data, not always granted. E.g.:
cannot aquire white Gaussian noise!
+ require appropriate choice of dictionary, or
dictionary learning from training data

® Measurement matrix K
+ must be associated with physical sampling
process (hardware implementation)
+ should guarantee recovery from K®
+ should ideally enable fast al%orlthms through fast
computation of Ky, K
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Example : Rice University
Single Pixel Camera

single photon detector

Low-cost, fast, sensitive
optical detection

PD

Compressed, encoded

image data sent via RF

Image encoded by PMM for reconstruction
and random basis

DSP

Random pattern on DMD array image reconstruction
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Remarks

® Worthless if high-res. sensing+storage = cheap
I.e., not for your personal digital cameral!

® Worth it whenever
+ High-res. = impossible (no miniature sensor, e.g, certain
wavelength)

+ Cost of each measure is high
<  Time constraints [fMRI]
<+  Economic constraints [well drilling]
< Intelligence constraints [furtive measures]?

+ Transmission is lossy
(robust to loss of a few measures)




Excessive pessimism !




Recovery analysis b = Az

® Recoverable set for a given “inversion”
algorithm

® |evel sets of LO-norm

® Worst case
= too pessimistic!
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Recovery analysis b = Az

® Recoverable set for a given “inversion”
algorithm

® |evel sets of LO-norm

® Worst case
= too pessimistic!

® Finer “structures’ of x
support(z), sign(x)

Borup, G. & Nielsen ACHA 2008,
A =Wavelets U Gabor, recovery of infinite supports for analog signals
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Recovery analysis b = Az

® Recoverable set for a given “inversion”
algorithm

® |evel sets of LO-norm

® Worst case
= too pessimistic!

® Finer “structures’ of x
support(z), sign(x)

Borup, G. & Nielsen ACHA 2008,
A =Wavelets U Gabor, recovery of infinite supports for analog signals

® Average/typical case

G., Rauhut,, Schnass & Vandergheynst, JFAA 2008, “Atoms of all channels, unite! Average case
analysis of multichannel sparse recovery using greedy algorithms”.
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Average case analysis !

LQ > b= AZIZO

direct model

inverse problem

Typical observation . V
P(z" = o) - FpTag i [E4]P




Average case analysis !

I > b := Axg

direct model

inverse problem

Typical observation v

P(z" = o) o L, = arg Af:liilmo [E4]P

C. Dossal (U. Bordeaux):
algorithm to search for
worst-case




Average case analysis !

I > b := Axg

direct model

inverse problem

Typical observation v

P(z" = o) o L, = arg Af:liilmo [E4]P

P:1—€,€<<1E

C. Dossal (U. Bordeaux):
algorithm to search for
worst-case




Average case analysis !

>» L > b := ACIZO
draw ground truth direct model

( &Wﬂm“ Favorable lg,[r{.@fg{/ ) inverse problem

Typical observation V
P(z" = o) o Tp —arg mu [E4]P
P=1-¢e<1

C. Dossal (U. Bordeaux):
algorithm to search for
worst-case




The Bayesian bit: L|

minimization and the
Laplacian distribution




Bayesian modeling

Observation: b = Ax
“True” Bayesian model P(xy) o< exp(—f(|xk]|))

Maximum likelihood estimation

ma?JXHP(JJk) = ml}nz f(Jzkl)
k k

LI minimization equivalent to MAP with Laplacian model

A

P(xg) o< exp(—|xk|)

Does LI minimization fit Laplacian data ?

21



L1 minimization for
Laplacian data ...

® Gaussian matrix

A7) —

® Laplacian data, 500 draws N

|

rc RN > b= Ax

® Reconstruction LI or L2

. . m
ry, := argmin ||z||,, p=1,2 f also Seeger and Nickish, ICML 2008

MAP is bad when the model fits the data!

= ML with Laplacian | Gaussian prior Mikolova 2007, Inverse Problems and Imaging
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Sparse recovery for
Laplacian data !

® Asymptotic analysis with “oracle” sparse estimation

1.4 T T T T T
Expected reconstruction error with min 2
e Expected best m—term approx error for Laplacian
_ﬁ 1.2} Expected oracle k—-term reconstruction error for Laplacian H
N & — — Oracle sparsity level =k/m for mean error reconstruction
.‘é’
2
o 1 | Sparse reconstruction better than min 12 at m/N=0.1488 ~
ps -
° [
o
\J o |
i I
— Q () = 08 [ ]
m — aussian < E |
[\J =
[ © I
— £ |
2 0.6 -
o |
§ |
5 |
SV
o 04 ‘ -
=
© |
© \
0.2 4‘ i
[
N — o ‘
0 | 1 1 1 | Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative number of measurements o = m/N
work in progress, G. & Davies —

)3 — IRISA




Thanks to

F. Bimbot, G.Gonon, S.Krstulovic, S.Lesage, B.
Mailhe (IRISA, Rennes)

M. Nielsen, L. Borup (Aalborg Univ.)

P.Vandergheynst, R. Figueras, P.Jost, K. Schnass
(EPFL)

H. Rauhut (U.Vienna)
M. Davies (U. Edinburgh)

and other collaborators ...




The end
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