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Données Internet

• Comment analyser automatiquement ces informations ?

           Deluge de Signaux

Seismic data

Satellite images

Medical data

Audio
Video
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• High-dimensional signals x = (x(1), ..., x(d)):

given n sample values {xi , yi = f(xi)}in

• Supervised learning: learn a function f(x) (class label)

  High Dimensional Analysis
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• Unsupervised problems: we know examples {xi}i and

• Supervised problems: we know examples {xi}i and
their values f(xi) and want to estimate f(x) for all x 2 ⌦.

• Low dimensional problems: dim(⌦) is small.

• High-dimensional but separable:

with 1D functions fk(u) for u 2 R ) indépendant components.

• High-dimensional ⌦ with many interactions: OUR PROBLEM.

want to estimate a probability density p(x) or clusters.

Di↵erent Level of Complexity:

f(x) =
Qd

k=1 fk(wk.x)

  Different Class of Problems
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Astronomy

Quantum ChemistryMasses

Interaction energy f(x) of a system x =

n

positions, values

o

Long range interactions:

each body interacts

with the d others

     Many Body Interactions

Charges
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• Recherche des lois de la physique: synthèses d’observations.

• On peut apprendre directement à partir des données,

mais il en faut beaucoup, beaucoup...

       Découvrir la Physique

Intelligences exceptionnelles: Newton, Maxwell, Einstein...

Electric fish : weak vs strong

Electric Eel Blackghost Knifefish
500V 1mV

• Vraiment ?

Un poisson peut résoudre les équations de l’électromagnétique

bien mieux que nous.
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• Comment et quoi apprendre ?

• Pourquoi faut il beaucoup de données et de mémoire ?

  Une Architecture de Traitement
      de Données Massives
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          Overview

• I- Curse of Dimensionality and Kernel Classifiers
– Support vector machines
– Kernels and metrics

• II- Deep Neural Networks and Wavelet Scattering Transforms
– Geometric invariants
– Iterated wavelet transforms
– Image and audio classification, and physics learning
– Stationary Processes: beyond Gaussian processes

• III- Unsupervised Kerenel Learning with Deep Neural Networks
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local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

Regression:

˜

f(x) =

P
i ↵i K(x, xi)

Classification binaire:

˜

f(x) = sign

⇣P
i ↵i K(x, xi)

⌘

 Nearest Neighbor Approximations

?
x
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- il faut 10 points pour couvrir [0, 1] à intervalles 10

�1

Problème des plus proche voisins: ils sont trés loin

en grande dimension.

0
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) on ne peut apprendre que des choses assez simples

La Malédiction de la Dimensionalité

10
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: plus que le nombre d’atomes dans l’univers.

: impossible si d � 100

- il en faut 10

d
pour [0, 1]

d

o
o

o
o

o
o

o
o

o
o

- il en faut 100 pour [0, 1]

2

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

o o o o o o o o

o o

Monday, June 23, 14



• Considerable variability in each class. 
• Euclidean distances are meaningless

Anchor Joshua Tree Beaver Lotus Water Lily

   High Dimensional Classification
CalTech 101

• Need to find discriminative invariants.
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   Signal Representation

• Signals x belong to subsets ⌦ of Rd

• No dimensionality curse when ⌦ is low-dimensional

kx1 � x2k is a good local measure of similarity

Finding ⌦ is a signal representation issue:

Diffusion�Maps

DIFFUSION�MAPS�Cohen, Gannot, Habets and Talmon \235

• Nonlinear�Dimensionality�Reduction

Swiss�roll�benchmark�example:

– A�2D�structure�lies�in�3D�space

– A�linear�mapping�is�not�applicable

• x1
• x2

manifold learning or sparse dictionary representations.

• For complex signals, ⌦ is most often high-dimensional:

) ⌦ must be reduced depending on f .
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    Low-Dimensional Data

• Face variations • Rigid motions

Diffusion�Maps

DIFFUSION�MAPS�Cohen, Gannot, Habets and Talmon \2321

• Example:�Lip�Reading

Processing�movies�of�a�speaker�reading�digits

• Lips motion

• Identify the manifold where the data lies.

Diffusion�Maps

DIFFUSION�MAPS�Cohen, Gannot, Habets and Talmon \2322

• Example:�Lip�Reading

Embedding�in�3D�images�of�lips�using�Diffusion�Maps

[Coifman &�Lafon,�06=]
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• Need to eliminate irrelevant variability: compute invariants.

Electro-Cardiograms

Audio Recordings

    High-Dimensional Data

TurbulencesTextures Beaver
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• (2) How to define � to get linear discriminative invariants ?

• (1) How to optimize (w, b) to minimize ”errors” ?

SVM: f(x) depends on kernel values K(x, xi) = h�(x),�(xi)i.

sign(f(x)) = ±1

    Linear and Kernel Classifiers

Rd0

d0 � d

Representation

Rd

x �

Training samples: {(xi, yi)}i

Supervised linear classification

h�x,wi + b � 0 class
?

f(x) = h�x,wi + b =
X

n

wn �n(x) + b

Hyperplance separation between pairs of classes:

w

Ck

Cl

• Classifications can be reduced to multiple binary classifications.

�x = {�n(x)}nd0
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Non-linear decision boundary.Linear decision boundary.

   How to choose the Hyperplane ?

Lecture 2: The SVM classifier
C19 Machine Learning         Hilary 2013           A. Zisserman

• Review of linear classifiers 
• Linear separability
• Perceptron

• Support Vector Machine (SVM) classifier 
• Wide margin 
• Cost function
• Slack variables
• Loss functions revisited

Binary Classification

Given training data (xi, yi) for i = 1 . . . N , with

xi � Rd and yi � {�1,1}, learn a classier f(x)
such that

f(xi)

(
� 0 yi = +1
< 0 yi = �1

i.e. yif(xi) > 0 for a correct classication.
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f(xi)

(
� 0 yi = +1
< 0 yi = �1

i.e. yif(xi) > 0 for a correct classication.
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   How to choose the Hyperplane ?

What is the best w?

• maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine

w

Support Vector
Support Vector

b

||w||

f(x) =
X

i

�iyi(xi
>x) + b

support vectors

wTx + b = 0

linearly separable data

Lecture 2: The SVM classifier
C19 Machine Learning         Hilary 2013           A. Zisserman

• Review of linear classifiers 
• Linear separability
• Perceptron

• Support Vector Machine (SVM) classifier 
• Wide margin 
• Cost function
• Slack variables
• Loss functions revisited

Binary Classification

Given training data (xi, yi) for i = 1 . . . N , with

xi � Rd and yi � {�1,1}, learn a classier f(x)
such that

f(xi)

(
� 0 yi = +1
< 0 yi = �1

i.e. yif(xi) > 0 for a correct classication.
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    Support Vector Machine

What is the best w?

• maximum margin solution: most stable under perturbations of the inputs

Support Vector Machine

w

Support Vector
Support Vector

b

||w||

f(x) =
X

i

�iyi(xi
>x) + b

support vectors

wTx + b = 0

linearly separable data
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• Find w with a convex quadratic optimization:

Solution : f(x) =

X

i

�i yi (xt
ix) + b

minw kwk2
subject to 8i yi(w

t
xi + b) � 1

   SVM Convex Optimization

SVM – sketch derivation

! Since w>x+ b = 0 and c(w>x+ b) = 0 dene the same

plane, we have the freedom to choose the normalization

of w

! Choose normalization such that w>x++b = +1 and w>x�+
b = �1 for the positive and negative support vectors re-

spectively

! Then the margin is given by

w

||w||
.
³
x+ � x�

´
=
w>

³
x+ � x�

´

||w||
=

2

||w||

Support Vector Machine

w

Support Vector
Support Vector

wTx + b = 0

wTx + b = 1

wTx + b = -1

Margin = 2

||w||

linearly separable data
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Introduce “slack” variables

w

Support Vector
Support Vector

wTx + b = 0

wTx + b = 1

wTx + b = -1

Margin = 2

||w||Misclassified 
point 

�i >
2

||w||

� = 0

�i <
1

||w||

�i � 0

" for 0 < � � 1
||w|| point is between

margin and correct side of hyper-

plane. This is a margin violation

" for � > 1
||w|| point is misclassied

“Soft” margin solution

The optimization problem becomes

min
w�Rd,�i�R+

||w||2+C
NX

i

�i

subject to

yi
³
w>xi+ b

´
� 1��i for i = 1 . . . N

" Every constraint can be satised if �i is su�ciently large

" C is a regularization parameter:

/ small C allows constraints to be easily ignored� large margin

/ large C makes constraints hard to ignore � narrow margin

/ C =� enforces all constraints: hard margin

" This is still a quadratic optimization problem and there is a

unique minimum. Note, there is only one parameter, C.

    Soft Margin Minimization

minw,�i kwk2 + C
P

i �i

subject to 8i yi(wtxi + b) � 1� �i

Solution : f(x) =

X

i

�i yi (xt
ix) + b
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f(x) = wtx + b =
X

i

�i yi (xt
ix) + b.

similarity measure

Non-linear decision boundary.

• Kernel trick: K(xi, x) = �(xi)t�(x)

f(x) =
X

i

�i yi K(xi, x) + b.

• Replacing x by its representation �(x):

f(x) = wt�(x) + b =
X

i

�i yi

⇣
�(xi)t�(x)

⌘
+ b.

• How to choose �(x) or equivalently K(x, x

0) (Mercer thm.) ?

   Kernel Support Vector Machine
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A kernel is symmetric if K(x, x

0
) = K(x

0
, x) and positive if

8ci 2 R 8xi 2 Rd
,

X

i

X

j

K(xi, xj) ci cj � 0

Theorem If K(x, x

0
) is continuous, symmetric, positive then

there exists � from Rd to a Hilbert space H such that

K(x, x

0) = �(x)t�(x0) = h�(x),�(x0)i

Example: Gaussian kernel K(x,

0
x) = exp

⇣
�kx�x0k2

2�2

⌘

       Mercer Theorem
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) Choose � increasing dimensionality !

Proposition: There exists a hyperplane separating
any two subsets of N points {�xi}i in dimension d

0
> N + 1

if {�xi}i are not in an a⇥ne subspace of dimension < N .

Example: Gaussian kernel K(x

0
, x) = exp

⇣
�kx�x0k2

2�2

⌘

     Increase Dimensionality

Problem: generalisation.

K(x0
, x) = ⇥�(x0),�(x)⇤ where �x � H inifinite dimensional.

If � is small, nearest neighbor classifier type:

�
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• We want to learn f(x) with x 2 ⌦ and dim(⌦) = d very big

from n examples {xi , f(xi)}in

   High-Dimensional Curse

• Curse of dimensionality: if n ⌧ 2

d
then for ”most” x:

) f(x) can not be computed with a local interpolation

mini kx� xik is large

Anchor Joshua Tree Beaver Lotus Water Lily
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• Ridge function approximations: �(x) =
n

⇢(hw, xi
o

w

⇢(t) = eit , max(t, 0) , argtan(t) ,  (t) , ...

    1 Layer Neural Network

If f 2 C↵[0, 1]d then kf � fMk  CM�↵/d

Theorem: For ”resonnable” bounded �(u)

fM (x) =
MX

m=1

am ⇢(hwm, xi)

�(x) LinearLinear
x

⇢

M

W1 W2

d
hwm, xi
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Gradient descent learning of the Wk: more than 10

9
parameters.

Why does it work ?

ImageNet (10

6
images and 10

3
classes): 17% error

Images, speech, bio-data: FaceBook, IBM, Google, Microsoft, Yahoo...

Similar to Wavelets

f̂(x)
Classification

• The revival of an old idea (G. Hinton, Y. LeCun)

Linear

    Deep Neural Neworks

�(x) = {�n(x)}n

...
W1 W2

Non

linéaire
LinéaireLinéaire

d

x

⇢⇢

Non

linéaire

Hierarchical Invariance
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 Neurophysiologie de la Perception

(e.g., Holmes and Gross, 1984; Horel, 1996; Schiller, 1995; Wei-
skrantz and Saunders, 1984; Yaginuma et al., 1982). While these
deficits are not always severe, and sometimes not found at all
(Huxlin et al., 2000), this variability probably depends on the
type of object recognition task (and thus the alternative visual
strategies available). For example, some (Schiller, 1995; Wei-
skrantz and Saunders, 1984), but not all, primate ventral stream
lesion studies have explicitly required invariance.
While the human homology to monkey IT cortex is not well es-

tablished, a likely homology is thecortex in andaround thehuman
lateral occipital cortex (LOC) (see Orban et al., 2004 for review).
For example, a comparison of monkey IT and human ‘‘IT’’
(LOC) shows strong commonality in the population representa-
tion of object categories (Kriegeskorte et al., 2008). Assuming
these homologies, the importance of primate IT is suggested by
neuropsychological studies of human patients with temporal
lobedamage,whichcansometimesproduce remarkably specific
object recognition deficits (Farah, 1990). Temporary functional
disruptionof parts of thehumanventral stream (using transcranial
magnetic stimulation, TMS) can specifically disrupt certain types
of object discrimination tasks, such as face discrimination
(Pitcher et al., 2009). Similarly, artificial activation of monkey IT
neurons predictably biases the subject’s reported percept of
complex objects (Afraz et al., 2006). In sum, long-term lesion
studies, temporary activation/inactivation studies, and neuro-
physiological studies (described below) all point to the central
role of the ventral visual stream in invariant object recognition.
Ventral Visual Stream: Multiple, Hierarchically
Organized Visual Areas
The ventral visual stream has been parsed into distinct visual
‘‘areas’’ based on anatomical connectivity patterns, distinctive

anatomical structure, and retinotopic mapping (Felleman and
Van Essen, 1991). Complete retinotopic maps have been re-
vealed for most of the visual field (at least 40 degrees eccentricity
from the fovea) for areas V1, V2, and V4 (Felleman and Van Es-
sen, 1991) and thus each area can be thought of as conveying
a population-based re-representation of each visually presented
image. Within the IT complex, crude retinotopy exists over the
more posterior portion (pIT; Boussaoud et al., 1991; Yasuda
et al., 2010), but retinotopy is not reported in the central and
anterior regions (Felleman and Van Essen, 1991). Thus, while
IT is commonly parsed into subareas such as TEO and TE (Jans-
sen et al., 2000; Saleem et al., 2000, 1993; Suzuki et al., 2000;
Von Bonin and Bailey, 1947) or posterior IT (pIT), central IT
(cIT), and anterior IT (aIT) (Felleman and Van Essen, 1991), it is
unclear if IT cortex is more than one area, or how the term
‘‘area’’ should be applied. One striking illustration of this is recent
monkey fMRI work, which shows that there are three (Tsao et al.,
2003) to six (Tsao et al., 2008a) or more (Ku et al., 2011) smaller
regions within IT that may be involved in face ‘‘processing’’ (Tsao
et al., 2008b) (also see Op de Beeck et al., 2008; Pinsk et al.,
2005). This suggests that, at the level of IT, behavioral goals
(e.g., object categorization) (Kriegeskorte et al., 2008; Naselaris
et al., 2009) many be a better spatial organizing principle than
retinotopic maps.
All visual cortical areas share a six-layered structure and the

inputs and outputs to each visual area share characteristic
patterns of connectivity: ascending ‘‘feedforward’’ input is
received in layer 4 and ascending ‘‘feedforward’’ output origi-
nates in the upper layers; descending ‘‘feedback’’ originates in
the lower layers and is received in the upper and lower layers
of the ‘‘lower’’ cortical area (Felleman and Van Essen, 1991).

Figure 3. The Ventral Visual Pathway
(A) Ventral stream cortical area locations in the macaque monkey brain, and flow of visual information from the retina.
(B) Each area is plotted so that its size is proportional to its cortical surface area (Felleman and Van Essen, 1991). Approximate total number of neurons (both
hemispheres) is shown in the corner of each area (M = million). The approximate dimensionality of each representation (number of projection neurons) is shown
above each area, based on neuronal densities (Collins et al., 2010), layer 2/3 neuronal fraction (O’Kusky and Colonnier, 1982), and portion (color) dedicated to
processing the central 10 deg of the visual field (Brewer et al., 2002). Approximate median response latency is listed on the right (Nowak and Bullier, 1997;
Schmolesky et al., 1998).

Neuron 73, February 9, 2012 ª2012 Elsevier Inc. 419

Neuron

Perspective

Cellules simples modélisées par

des ondelettes

Vision

Audition

Cochlée: ondelettes

Ventral

Hubel, Wiesel
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• Reduce the space volume with iterated contractions

�x = ⇢Wm ... ⇢W2 ⇢W1x

• Iterative space contraction: reduce intra-class variability

but avoid reducing class distances: margin condition.

- ⇢ is a contraction

- Wk preserve distances: kWkx�Wkx
0k = kx� x

0k

     Iterated Contractions

⇢W1

⇢W2

⇢W3

• How to choose the Wk ?
Monday, June 23, 14



• Contract ⌦ with an operator � such that:

- 8x 2 ⌦ , mini k�(x)� �(xi)k is small

- f(x) is regular relatively to d(x, x

0
) = k�(x)� �(x

0
)k

8x, x0 |f(x)� f(x0)|  C k�(x)� �(x0)k

then f(x) can be locally interpolated:

f(x) ⇡
nX

i=1

↵i e
k�(x)��(x

i

)k2

2�2

margin condition:

k�(x)� �(x0)k � C

�1|f(x)� f(x0)|
Regression

           Volume Reduction
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• Contract ⌦ with an operator � such that:

- 8x 2 ⌦ , mini k�(x)� �(xi)k is small

- f(x) is regular relatively to d(x, x

0
) = k�(x)� �(x

0
)k

8x, x0 |f(x)� f(x0)|  C k�(x)� �(x0)k

margin condition:

Classification

k�(x)� �(x0)k � C

�1 if f(x) 6= f(x0)

f(x) ⇡ sign
⇣ nX

i=1

↵i e
k�(x)��(x

i

)k2

2�2

⌘
then f(x) can be locally estimated:

  Volume Reduction
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Deformations are actions of di�eomorphisms: infinite group.

Each digit is invariant to a specific set of small deformations

Invariance to Translations

Two dimensional group: R2

  II- Translations and Deformations
• Patterns are translated and deformed

• Textures are stationary (translation invariant) processes
with deformations
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Translation orbits
(two-dimensional)

PV?k
nearly invariant

to deformations

Supervised learning:

”Linearizes” deformations

   Translation and Deformations

Deformation orbits
(high dimensional)

Invariant to translations
�

Discriminant
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• Invariance to translations xc(t) = x(t� c)

Fourier invariants

are not stable either.

Not stable

• Lipschitz stable to di�eomorphisms x⌧ (t) = x(t� �(t))

di�eomorphism metric

     Stable Translation Invariants

small deformations of x =� small modifications of �(x)

⇥c � R , �(xc) = �(x) .

x(t)

xc(t)

�(x)

�(xc)

: registration

0

0

x(t)

x⌧ (t)

: Fourier Modulus�(x) = |x̂(!)|

�(xc) = |x̂c(!)|
!

!

�(x)

�(x⌧ ) k�(x)� �(x⌧ )k � sup
t

|⌧ 0(t)| kxk

⇤� , ⇧�(x� )� �(x)⇧ ⇥ C sup
t

|⌃�(t)| ⇧x⇧ .
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if xc(t) = x(t� c) then | �xc(�)| = |x̂(�)|

• Fourier transform x̂(�) =
�

x(t) e�i�t dt invariance:

Example: If ⇥(t) = �t then x⌧ (t) = x((1� �)t)

) bx⌧ (⇥) = (1� �)�1 bx((1� �)�1⇥)

bx(�)

     Fourier Translation Invariance

• Instabilites to small deformations x� (t) = x(t� �(t)) :

| |x̂� (�)|�| x̂(�)| | is big at high frequencies

!⇠�⇠

bx⌧ (�)✏⇠ ✏⇠
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• Dilated:

Unitary: �Wx�2 = �x�2 .

• Complex wavelet:  (t) =  a
(t) + i b

(t)

⇥�(t) = 2�j ⇥(2�jt) with � = 2�j .

  Scale Separation with Wavelets

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

Wx =
✓

x ? �(t)
x ?  �(t)

◆

t,�

• Wavelet transform:

x̂ (�)

averaging
high frequencies
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rotated and dilated:

real parts imaginary parts

• Complex wavelet:  (t) =  a
(t) + i b

(t) , t = (t1, t2)

 �(t) = 2�j  (2�jr✓t) with � = (2j , ✓)

Scale and Direction Separation in 2D

|�̂�(⇥)|2

�1

�2

Wx =
✓

x ? �(t)
x ?  �(t)

◆

t,�

Unitary: �Wx�2 = �x�2 .

• Wavelet transform:
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Proposition: (Littlewood-Paley)

if and only if

for almost all �.

|�̂(!)|2 +
1
2

X

�

⇣
| ̂�(!)|2 + | ̂�(�!)|2

⌘
= 1

The wavelet transform is a tight frame

kWxk2 = kx ⇤ �k2 +
X

�

kx ⇤ ⇥�k2 = kxk2

⇥x⇥2 =
R

|x(t)|2 dt < �
Functions in L2

(Rd
):

for x 2 L2
(Rd

)

    Wavelet Tight Frames in L2

Wx =
✓

x ? �(t)
x ?  �(t)

◆

t,�
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• The wavelet dictionary { �(t� u)}t,� is translation invariant.

• Wavelets are uniformly stable to deformations:

if  �,⌧ (t) =  �(t� ⌧(t)) then

⇤⇥� � ⇥�,⇥⇤ ⇥ C sup
t

|⌅�(t)| .

     Why Wavelets ?
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x(t)

Wavelet transform

Wmodulus

|W |

Unitary: kWx�Wx

0k = kx� x

0k

) k|W |x� |Wx

0|k  kx� x

0k

Preserves the norm: k|W |xk = kxk

    Wavelet Translation Invariance

:locally translation invariant

x ? �(t)

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

Contraction: ||a|� |b||  |a� b|

|x ?  �1 | ? �(t)
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|x ?  �(t)|
Wavelet time-frequency

but loss of information.

Locally invariant to translations and stable to deformations

         Wavelet Stabilization

�

t

Time averaging on 370ms

|x ?  �| ? �(t)�

t
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|x ?  �1 |

• The high frequencies of |x ?  �1 | are in wavelet coe�cients:

W |x ?  �1 | =
✓

|x ?  �1 | ? �(t)
|x ?  �1 | ?  �2(t)

◆

t,�2

    Recovering Lost Information

8�1 ,�2 , | | x ?  �1 | ?  �2 | ? �(t)

• Translation invariance by time averaging the amplitude:

|x ⇤⇥ �1 | ⇤ �
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x(t)

scale and orientation

separation

Local invariant

by translation

x ? �

        Translation Invariance

Wavelet transform

x ⇥ ��1(t) x ⇥ ��0
1
(t) x ⇥ ��

00
1
(t) x ⇥ ��000

1
(t)W1
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|x ⇥ ��000
1

(t)||x ⇥ ��00
1
(t)||x ⇥ ��0

1
(t)||x ⇥ ��1(t)|

Invariant
x

x ? �

     Scattering Neuronal Network

Wavelet Modulus

|W1|
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x(t)

|x ⇥ ��000
1

(t)||x ⇥ ��00
1
(t)||x ⇥ ��0

1
(t)||x ⇥ ��1(t)|

|x ?  �1 | ? � |x ?  �0
1
| ? �

Invariants
||x ?  �1 | ?  �2 | ? �

     Scattering Neuronal Network

||x ⇥ ��1 | ⇥ ��2(t)|
|W2|

|||x ⇥ ��1 | ⇥ ��2 | ⇥ ��3(t)|

|W3|

Invariant

Invariants

Wavelet Modulus

|W1|

x ? �(t)

|x ?  �00
1
| ? � |x ?  �000

1
| ? �
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x

x ? �

|x ?  �1 | ? �

||x ?  �1 | ?  �2 | ? �

Scattering: Sx =

0

BBBB@

S0(x) = x ? �

S�1(x) = |x ?  �1 | ? �
S�1,�2(x) = ||x ?  �1 | ?  �2 | ? �

S�1,�2,�3(x) = |||x ?  �2 | ?  �2 | ?  �3 | ? �
...

1

CCCCA

�1,�2,�3

         Wavelet Scattering
x(t)

|W1|

|W3|

|W2|

Theorem:

kSx� Sx

0k  kx� x

0k et kSxk = kxk
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lo
g

(!
1
)

t

First−order windowed scattering (small scale)

lo
g

(!
1
)

t

First−order windowed scattering (large scale)

lo
g

(!
2
)

t

Second−order windowed scattering (large scale) Band #75

18 Hz

xi(t) = ai(t)
⇣
c ⇥ h(t)

⌘
with c(t) =

X

n

�(t� nT ) .

        Amplitude Modulation

1977 Hz

log(�1)

tlog(�1)

t

t

log(�2)

|x ?  �1(t)|

|x ?  �1 | ? �(t)

||x ?  �1 | ?  �2 | ? �(t) for �1 = log(1977)
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stable to deformations x⌧ (t) = x(t� ⌧(t))

kSx� Sx⌧k  C sup
t

|r⌧(t)| kxk

�Sx�2 =
1X

m=0

X

�1,...,�m

���|||x ⇤ ⇥�‘ | ⇤ ...| ⇤ ⇥�m | ⇤ �
���

2

      Scattering  Properties

contractive kSx� Syk  kx� yk

preserves norms kSxk = kxk

Theorem: For appropriate wavelets, a scattering is

Sx =

�

⇧⇧⇧⇧⇤

x ⇤� (u)
|x ⇤ ⇥�1 | ⇤ �(u)

||x ⇤⇥ �1 | ⇤ ⇥�2 | ⇤ �(u)
|||x ⇤⇥ �2 | ⇤ ⇥�2 | ⇤ ⇥�3 | ⇤ �(u)

...

⇥

⌃⌃⌃⌃⌅

u,�1,�2,�3,...
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Wavelet transforms ”nearly commute” with deformations:

D⌧x(t) = x(t� �(t))

Commutator operator:

[W,D⌧ ] = W D⌧ �D⌧ W

Lemma :

⇥ [W,D� ] ⇥ � C sup
t

|⇤�(t)| .

and ⇥ [|W |, D⌧ ] ⇥ � ⇥ [W,D⌧ ] ⇥
because modulus commutes with di�eomorphisms.

 Lipschitz Stability to Deformations
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Image
x(t)

t = (t1, t2)

�(t) = 1

              Image Scattering Transforms

kx ⇥ ��1k1

Scattering

�1 = 2j1 r�1

|x ?  �1 | ? �
�|x ⇥ ��1 | ⇥ �2j2�1

||x ?  �1 | ?  �2 | ? �

�1 = 2j1 r�1

�2 = 2j2 r�2

Fourier Modulus

|x̂(�)|
� = (�1, �2)

�1

�2
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 Digit Classification: MNIST
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x(t) ||x ⇤ ⇥�1 | ⇤ ⇥�2 | ⇤ �(2Jn)|x ⇤ ⇥�1 | ⇤ �(2Jn)

Second order Scattering Sx:

 Digit Classification: MNIST

2J

�
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S

• Each class is represented by a random process Xk

The support of SXk is approximated by a low-dimensional

ˆ

k(x) = arg max

k
kSx� PAkSxk .

a�ne space Ak computed with a PCA.

       Affine Space Classification

A1

A2

x

Sx
x

x

Joan Bruna
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Training size Conv. Net. Scattering
300 7.2% 4.4%
5000 1.5% 1.0%
20000 0.8% 0.6%
60000 0.5% 0.4%

LeCun et. al.

Classification Errors

Joan Bruna

 Digit Classification: MNIST

yx

Sx

Supervised Linear
Classifier: PCA/SVM
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Astronomy

Quantum ChemistryMasses

Interaction energy f(x) of a system x =

n

positions, values

o

Long range interactions:

each body interacts

with the d others

     Many Body Interactions

Charges
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with x(u) =
dX

k=1

qk �(u� pk)

• Energy of d interacting bodies:

f(x) =
dX

k=1

dX

k0=1

qk qk0

|pk � pk0 |�

(Rocklin, Greengard)

    Many Body Interactions

Matthew Hirn

Potential |r|�� )

each particle interacts with O(log d) groupsFast multipoles:

For any ✏ > 0 there exists wavelets with

f(x) =
MX

m=0

X

�1,�m

↵(�1, ..,�m)S2
x(�1, ...,�m)(1 + ✏)

Theorem:

N. Poilvert
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Scattering Representation

plongées sur une variété tri-dimensionelle:

• Energies f(x) de di�érentes configurations x de H2, H3 et H4

     Quantum Chemistry

Fourier Representation
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   Quantum Chemistry

• Complex orbital interactions: no analytical energy f(x).

Matthew Hirn

• Estimation from n = 700 nearly 2D molecules: {xi , f(xi)}in

from scattering vectors

n

Sx(p) , S

2
x(p)

o

p

• Best M dimensional approximation fM of f calculated

logM

log kf � fMk: M-dimensional scattering error

logM

M = 130

kfM � fk ⇡ CM�1/2

kf � fMk = 22 kcal/mole

Learn physics from examples

   Quantum Chemistry

f(x) ⇡
X

p

↵p Sx(p) + �pS
2
x(p)

Multiscale approximation:
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x(t): stationary process

             Textures with Same Spectrum

Textures

window size = image size

Wavelet Scattering
Power Spectrum

Fourier

�1

�2

�1

�2

x(t) |x ?  �1 | ? � ||x ?  �1 | ?  �2 | ? �
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SX(t) =

0

BBBB@

X ? �(t)
|X ?  �1 | ? �(t)

||X ?  �1 | ?  �2 | ? �(t)
|||X ?  �2 | ?  �2 | ?  �3 | ? �(t)

...

1

CCCCA

�1,�2,�3,...

• If X(t) is a stationary process then

||X ⇥ ��1 | ⇥ ...| ⇥ ��m(t)| is also stationary.

Scattering :

SX =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...

SX(t) may converge to the expected scattering transform:

• When �� 1 with ”appropriate” ergodicity conditions”

      Expected Scattering  Transform
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Proposition: (Littlewood-Paley)

if and only if

for almost all �.

|�̂(!)|2 +
1
2

X

�

⇣
| ̂�(!)|2 + | ̂�(�!)|2

⌘
= 1

The wavelet transform is a tight frame

kWxk2 = kx ⇤ �k2 +
X

�

kx ⇤ ⇥�k2 = kxk2

⇥x⇥2 =
R

|x(t)|2 dt < �
Functions in L2

(Rd
):

for x 2 L2
(Rd

)

    Wavelet Tight Frames in L2

Wavelet transform: Wx =
✓

x ? �(t)
x ?  �(t)

◆

t,�
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Proposition: (Littlewood-Paley)

if and only if

for almost all �.

Wavelet transform:

The wavelet transform preserves the variance of stationary X

Stationary processes X(t) with E(|X(t)|2) <�.

WX =
✓

E(X)
X ⇥ ��(t)

◆

t,�

E(X)2 +
X

�

E(|X ⇥ ��|2) = E(|X|2)

1
2

X

�

⇣
| ̂�(!)|2 + | ̂�(�!)|2

⌘
= 1

 Wavelet Frames of Processes
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|W |X =
⇣
E(X) , |X ⇥ ��|

⌘

�

• S preserves is contractive because each |Wk| are contractive

     Expected Scattering Transform

XE(X)

|X ⇥ ��1 |

|W1|

E(||X ⇥ ��1 | ⇥ ��2 |)

|||X ⇥ ��1 | ⇥ ��2 | ⇥ ��3 |

|W3|

E(|X ⇥ ��1 |)

||X ⇥ ��1 | ⇥ ��2 |
|W2|
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X(t) stationary process:

SX =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...

�SX�2 = E(X)2 +
1X

m=1

X

�1,...,�m

E
⇣

|||X ⇥ ��‘ | ⇥ ...| ⇥ ��m |
⌘2

      Expected Scattering  Transform

Theorem: A scattering is

kSX � SX⌧k  C sup
t

|r⌧(t)| E(|X|2)1/2 .

contractive ⇤SX � SY ⇤2 ⇥ E(|X � Y |2)

stable to stationary deformations X⌧ (t) = X(t� �(t))
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Theorem For any stationary X, equivalent propositions:

(i) The scattering transform is mean-square consistent.

(ii) �SX�2 = E(|X|2)

(iii) lim
m!1

X

�1,...,�m

E
⇣

|||X ⇥ ��1 |... ⇥ ��m |
⌘2

= 0

• Numerically always verified but not proved.

     Expected Scattering Transform
XE(X)

|X ⇥ ��1 |

|W1|

E(||X ⇥ ��1 | ⇥ ��2 |)

|||X ⇥ ��1 | ⇥ ��2 | ⇥ ��3 |

|W3|

E(|X ⇥ ��1 |)

||X ⇥ ��1 | ⇥ ��2 |
|W2|
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lo
g(
t

1)

t

First−order windowed scattering (small scale)

lo
g(
t

1)

t

First−order windowed scattering (large scale)

lo
g(
t

2)

t

Second−order windowed scattering (large scale) Band #51

SpectrumX: stationary process

    Sounds with Same Spectrum 

�

2s window

Fourier

J. McDermott |x ⇥� �1 |(t)

|x ?  �1 | ? �(t)

||x ?  �1 | ?  �2 | ? �(t) for �1 = 2000

log(�2)

log(�1)

log(�1)

t
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SX =

0

BBBB@

E(X) = E(U0X)
E(|X ⇥ ��1 |) = E(U1X)

E(||X ⇥ ��1 | ⇥ ��2 |) = E(U2X)
E(|||X ⇥ ��2 | ⇥ ��2 | ⇥ ��3 |) = E(U3X)

...

1

CCCCA

�1,�2,�3,...

p(x) =

1

Z
exp

⇣ 1X

m=1

�m . Umx
⌘

and maximizes the entropy �
R

p(x) log p(x) dx

can be written:

Theorem (Boltzmann) The distribution p(x) which satisfies

• An expected scattering is a non-complete representation

Z

RN

Umx p(x) dx = E(UmX)

Representation of Random Processes
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Original

Water

Paper

Cocktail Party

Gaussien/Fourier Scattering

• x 2 Rd
realization of a stationary process

- Gaussien model: covariance ) d Fourier spectrum coe�cients

- Scattering model Sx of second order: log

2
d coe�cients

Sample X(t) so that kSX � Sxk is small

Representation of Audio Textures
Joan BrunaJoakim Anden
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Synthesis Examples

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

original

1st+2nd order scattering

K = 500[McDermott & Simoncelli’11]

Gaussian

J. Bruna
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• Mesure du niveau de stress d’un Fetus avant accouchement

Stress
bien détecté

Sain Sain
mal detecté

     Classification d’ECG
P. Abry, J. Anden, V. Chudacek, M. Doret, R. Talmon

90 95 100 105 110 11560

80

100
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160

180

Time (min)

Bp
M

FETUSES: UnHealthy Subject

50 55 60 65 70 75 8060

80

100

120

140

160

180

Time (min)

Bp
M

FETUSES: Healthy Subject with Abnormal FHR

115 120 125 130 135 14060

80

100

120

140

160

180

Time (min)

Bp
M

FETUSES: Healthy Subject with Normal FHR

7.5. MANIFOLD EMBEDDING 161

to define a Riemannian metric. Let C(k) denote the covariance ma-
trix of SX(k). The availability of time labels designates local neigh-
borhoods, which allows for the estimation of the covariance matrices
in short windows of length 2L + 1 centered at time frame k:

⇧C(k) =
k+L⌅

l=k�L

(SX(l)� ⇧µ(k))T (SX(l)� ⇧µ(k)) (5)

where ⇧µ(k) is the empirical mean of the vectors in the window. Let
D denote the dimension of the manifold, where usually D ⇤ N
(with N the dimension of the scattering coefficient vector). Since
the variations of the data in N dimensions are confined to a D di-
mensional structure, the rank of the local covariance matrices of size
N ⇥ N is D. The use of this fact is twofold. First, the empirical
ranks of the covariance matrices estimate the dimension of the man-
ifold. Second, assuming this dimension is fixed, the consistency of
the rank over time indicates that sufficient data is available.

Scattering coefficients are obtained with time-averaging which
provide estimators of expected values, which have, moreover, been
shown to have a nearly Gaussian distribution [18]. For Gaussian
random vectors, log probabilities are defined by the Mahalanobis
distance. It yields a Riemannian metric between pairs of vectors of
scattering coefficients, defined by:

d(k, l) = (SX(k)�SX(l))T (C(k)+C(l))�1(SX(k)�SX(l))
(6)

The Mahalanobis distance implicitly encodes the time variations of
the data, is invariant to local affine distortions, and has recently
been used to better reveal the governing states of dynamical systems
[26, 27, 15]. Note that the covariance matrices are noninvertible,
and hence, prior to the inverse the matrices are projected on their D
principal components.

This Mahalanobis distance is further used to construct a K ⇥
K kernel matrix W consisting of pairwise affinities between the
vectors:

Wkl = exp

�
�d(l, k)

⌅

⇥
, k, l = 1, . . . , K (7)

where ⌅ is a tunable kernel scale, and K is the number of available
time frames. The kernel defines a weighted graph, within which
the vectors of scattering coefficients are the nodes and the kernel
sets the weights of the edges: Nodes SX(k) and SX(l) are con-
nected by an edge with weight Wkl. Thus, each vector is effectively
connected to other vectors that are within ⌅ vicinity with respect to
the Mahalanobis distance (6). Let D be a diagonal K ⇥ K ma-
trix, whose diagonal elements are given by Dkk =

⇤
l Wkl, and let

Wnorm = D�1/2WD�1/2 be a normalized kernel that shares its
eigenvectors with the normalized graph-Laplacian I�Wnorm [28].
This kernel normalization handles nonuniform sampling of the data
on the manifold and is beyond the scope of this paper (cf. e.g. [25]).

Applying the eigenvalue decomposition (EVD) to Wnorm yields
a set of eigenvalues and eigenvectors, denoted by ⇥i and �i, respec-
tively. A nonlinear embedding of the vectors of scattering coeffi-
cients into a D dimensional space is constructed:

SX(k) ⌃⌅ (⇤1(k), ⇤2(k), . . . , ⇤D(k)) . (8)

While the kernel represents local connections, a global representa-
tion that is traditionally viewed as the parameterization of the mani-
fold is obtained through the eigenvectors of the kernel that implicitly
integrates the local connections.

5. FETAL HEART RATE VARIABILITY ANALYSIS

5.1. Graph-based Embedding

Fig. 1. Embedding Eigenvalue Decay.

Fig. 2. Low-Dimensional Manifold Time-Window Embedding.
Each time-window of each subject is projected onto the 3D restric-
tion of the embedding space.

Scattering Coefficients. To study the time evolution (or trajecto-
ries) of the temporal dynamics of F-HRV BpM time series and thus
of the fetus health status, scattering coefficients SX(k) (cf. Eq. 4)
are computed, for each subject, across the entire F-HRV time series,
within sliding windows of size ⇧ 2min, with 50% overlap, with
J = 10, yielding 2J/fs = 128s. Parameter J = 10 is chosen such
because it is known from previous works (cf. e.g., [4, 5, 9, 10]) that
F-HRV temporal dynamics relevant to acidosis detection involve
time scales ranging from 1s to 1min. Further, 2min-long window
permits an efficient average for all time scales in the computation
of the scattering coefficient vector SX(k) (cf.Eq. 4). For each time
window, SX(k) has dimension N = 55.
Embedding procedure. The embedding procedure is applied to
the collection of the SX(k) computed along the entire trajectories
for P = 45 (subjects), resulting into K = 5952 time positions. Em-
bedding parameters � and L (cf. Section 4) are selected empirically
by checking a posteriori that the eigenvalues ⇥i of Wnorm exhibit a
smooth decay (as shown in Fig. 1), and set to � = 30 and L = 10.
Low-dimensional manifold embedding. Fig. 2 displays the
mapping of each time-window for each subject into the embedding
space, restricted to its 3 first dimensions (setting D = 3). It clearly
illustrates that the data create on a croissant-shaped low dimensional
manifold, showing a number of interesting features. First, the three
classes are spread along a continuum on the manifold, yet tend to
concentrate in different sub-parts of the manifold. Second, acidotic
fetuses (FIGO-TP) clearly depart from healthy subjects (FIGO-FP
and FIGO-TN). Fourth, amongst Healthy subjects, the FIGO-FP do
form a different cluster from the FIGO-TN, yet this cluster departs
to the left from the FIGO-TN cluster, in clear contradistinction to the
FIGO-TP cluster that departs to to the right. This low-dimensional

Figure 7.2: The projection of all scattering frames onto the low-dimensional manifold
learned by the EIG method. From [CTA+ed].

and use this to normalize W , giving

�W = R�1/2WR�1/2.

For more details on this normalization, see [TC13].
Computing the D eigenvectors {⇥1, ⇥2, . . . ,⇥D} with largest eigenvalues of �W gives us

a parameterization of the underlying manifold, mapping each frame Sx(nT ) to a point on
the manifold. Specifically, we have the mapping

Sx(nT ) ⇥� (⇥1(n), ⇥2(n), . . . ,⇥D(n)),

which associates any of the scattering coe�cients with their corresponding point in RD,
representing the structure of the low-dimensional manifold [TC13].

Note that in this and the previous section, all the scattering coe�cients are given
as being computed from a single signal. This is not required for the method to work.
Multiple signals can be used by concatenating their scattering coe�cients and using the
above recipe. Care must only be taken when computing the local covariance matrix so
that only frames from one signal are used to calculate a given covariance matrix.

7.5.3 Evaluation

Calculating the local covariance matrices and creating the a�nity matrix from the scat-
tering features, we are able to construct a low-dimensional embedding as described in
Section 7.5.2. This embedding is learned using all 45 subjects with a kernel width � = 30
and Tc = 10T .

The result, projected onto its 3 first dimensions, is shown in Figure 7.2. We see
that the data is concentrated on a crescent-shaped manifold and that each of the three

Variété dans l’espace des coe�cients Sx

Erreur: 33% ! 18%

bien détecté
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40 classes of CureT

     Classification of Textures
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|X ⇤ ⇥�1 | ⇤ �

Expected Scattering

estimated with � = 1

X

     Classification of Textures

||X ⇤ ⇥�1 | ⇤ ⇥�2 | ⇤ �
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S

• Each class is represented by a random process Xk

The support of SXk is approximated by a low-dimensional

ˆ

k(x) = arg max

k
kSx� PAkSxk .

a�ne space Ak computed with a PCA.

       Affine Space Classification

A1

A2

x

Sx
x

x

Joan Bruna
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Training Fourier Histogr. Scattering
per class Spectr. Features

46 1% 1% 0.2 %

J. Bruna

     Classification of Textures

CUREt database
61 classes

Texte

yx

Sx

Supervised Linear
Classifier: PCA/SVM
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Time and frequency translations and deformations:

for speech recognition not for locutor recognition.

• Frequency transposition invariance is needed

        Frequency Transpositions

log(!)

t
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• Frequency transposition is a common source of variability

• Transposition , translation and deformations in log �1

     Transposition Invariance

• Invariance with a ”frequency scattering” along log �1

Scattering along log frequency �1 = log2 �1:

Scattering
along t

�xScattering
along log �1

x(t)

z(�1) = |x ?  2�1 (t)|

J .Anden

log �1

t
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• Each frame is classified using a Gaussian kernel SVM.

      Genre Classification (GTZAN)

Feature Set Error (%)

∆-MFCC (32 ms)

Time Scat., m = 1

Time Scat., m = 2

Time & Frequency Scat., m=2

19.3

17.9

12.3

10.3

10 classes and 30 seconds tracks.
• GTZAN: music genre classification (jazz, rock, classical, ...)

T = 370 ms

J .Anden

Monday, June 23, 14



• Training on 3696 phrases (139868 phones) and
and testing on 192 phrases (7201 phones)

• Each phone is classified using a Gaussian kernel SVM.

      Phone Classification (TIMIT)

Feature Set Error (%)

∆-MFCC (32 ms)

State of the art (excl. scattering)

Time Scat., m = 1

Time Scat., m = 2

Time & Freq. Scat., m = 2

19.3

16.7

18.5

17.7

16.5

T = 32 ms

J .Anden
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) need to build invariant on the joint roto-translation group.

• Separable cascade of invariants loose joint distributions.

• Separable rotation and translation invariants can not

discriminate:

   Joint versus Separable Invariants 
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(r, t) . x(u) = x(r�1(u� t))

• Group multiplication:

(r0, t0) . (r, t) = (r0r , r0t + t0) : not commutative.

• Roto-translation group G = {g = (r, t) 2 SO(2)⇥ R2}

for roto-translations : x ~ �(g) =

Z

G
x(g0) �(g

0�1g) dg0

• An averaging invariant is convolution on L2
(G):

x(g) = x(r, t)

• Roto-translation Haar measure : dg = dt d� (rotation angle �)

• Inverse: (r, t)�1 = (r�1,�r�1t).

      Roto-Translation Group

for translations : x ? �(t) =

Z

R2
x(t

0
) �(t� t

0
) dt

0
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• One can define separable complex wavelets ��2
(r, t) � L2(G) such that

W2x =

✓
x ~ �(r, t)

x ~ ⇥�2
(r, t)

◆

�2,r,t

is tight frame of L2
(G).

x ~ ��(g) =
Z

G
x(g0) ��(g

0�1g) dg0

�x�2 =
Z

G
|x(g)|2dg = �x ~ ��2 +

X

�2

�x ~ ⇥�2�2

• How to define a wavelet transform of x(r, t) � L2(G) ?

  Scattering on a Lie Group
L. Sifre

Monday, June 23, 14



x(t)
t = (t1, t2)

• Convolutions along translation parameter: t

      Translation Invariance 

|W1| = Xj(✓, t)|x ?  2jr✓ (t)|

x ? �(t)

translation

Laurent Sifre

3D variable

t = (t1, t2)

✓

Xj(✓, t)

|W1|

|Xj(✓, .) ?  �2(t)|

Xj(✓, .) ? �(t)

translation

|W2|x
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|W1| |W2|= Xj(✓, t)|x ?  2jr✓ (t)|

Xj ~ �(✓, t)

|Xj ~  �2
(✓, t)|

x(t)
t = (t1, t2) t = (t1, t2)

✓

   Rotation-Translation Invariance 

x

x ? �(t)

translation roto-translation

Laurent Sifre

3D variable

|W1|

• Convolutions along translation parameter: t

Convolutions along rotation parameter: ✓
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|X ~  �2
(j, ✓, t)||W1| |W2||x ?  2jr✓ (t)|

x(t)
t = (t1, t2) t = (t1, t2)

✓, j

     Rotation-Scale Invariance 

x

x ? �(t)

translation

scalo-roto-translation

Laurent Sifre

= X(j, ✓, t)

X ~ �(j, ✓, t)
4D variable

|W1|

Convolutions along rotation and scale parameters: ✓ , j

• Convolutions along translation parameter: t
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UIUC database:
25 classes

Scattering classification errors

Training Translation Transl + Rotation + Scaling

20 20 % 2% 0.6%

  Rotation and Scaling Invariance
Laurent Sifre

yx

Sx

Supervised Linear
Classifier: PCA/SVM
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   Complex Source of Variability

Buddha LotusGuitarePuma

BateauNénuphareMetronome

Castore

Arbre de Joshua Ancre

CalTech 101/256 data-basis:
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  Alex Deep Neural Network

Phase 2Phase 1

Dimensionality 
augmentation Dimensionality reduction

Depth
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Problems/Datasets in Computer Vision
• Imagenet

– 14,000,000 images (1,000,000 with bounding box annotations)
– 20000 categories
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Scattering

Alex Deep Network

CalTech-101

CalTech-256
Imagenet

Roto-translation

Accuracy

Dimensionality

Reduction

      Cal-Tech Classification
E. Oyallon

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 7

% Classification accuracy

Depth

Dimensionality

Increase
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Instabilities of Deep Networks
[J. Bruna Szegedy et al, ICLR’14]

correctly
classified

kx� x̃k < 0.01kxk

classified as 
ostrich

x

x̃

Alex Krizhevsky’s Imagenet
8 layer Deep ConvNet
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For example: ⇢(u) = max(0, u) or ⇢(u) = |u|

Regression

Convolution networks: Wmx(k) = {x ? gl(2k)}lK

    Deep Neural Neworks

Linear
W1x

W1

d

x
contraction

linear
Non

⇢W1x

⇢(x) =
⇣
⇢(x(k))

⌘

k

⇢
f̂(x)

Classification

Linear

�(x) = {�n(x)}n

...

Linear

W2 ⇢

contraction

linear
Non

Hierarchical Invariance
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• Reduce the space volume with iterated contractions

�x = ⇢Wm ... ⇢W2 ⇢W1x

• Iterative space contraction: reduce intra-class variability

but avoid reducing class distances: margin condition.

- ⇢ is a contraction

- Wk preserve distances: kWkx�Wkx
0k = kx� x

0k

     Iterated Contractions

⇢W1

⇢W2

⇢W3

• How to choose the Wk ?
Monday, June 23, 14



        Hierarchical Averaging

Hx(u) =
x(2u) + x(2u+ 1)

2

H2x

H3x

H4x

• Hierarchical averaging:
progressive invariant computation

x(u)
u

• Linear translation invariance by averaging.
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W = (H,G) is an orthogonal operator

        Haar Filtering

n

x(2u)� x(2u+ 1)p
2

o

ud/2

GH

{x(u)}ud

n

x(2u) + x(2u+ 1)p
2

o

ud/2
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n

�J(u� 2

Jk) ,  j(u� 2

jk)
o

j>J,k
orthonormal basis of L2

[0, 1]

        Haar Wavelet Basis
W1

W1
GH

W2 GH

W3 GH

W4 GH

x ? �J(2
J
k)

0 2J

�J(u)

u

x ?  j(2
j
k)

 j(u)

2j0 u

x
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W = (H,G) is an orthogonal operator

        Haar Filtering

n

x(2u)� x(2u+ 1)p
2

o

ud/2

GH

{x(u)}ud

n

x(2u) + x(2u+ 1)p
2

o

ud/2
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permutation invariant of (a, b)

max(a, b) =
a+ b

2

+

|a� b|
2

min(a, b) =
a+ b

2
� |a� b|

2

⇣a+ bp
2

,
|a� b|p

2

⌘
:

n

x(2u) + x(2u+ 1)p
2

o

ud/2

n |x(2u)� x(2u+ 1)|p
2

o

ud/2

|W | = (H, |G|) is contracting

⇢G = |G|

        Haar Modulus

H

{x(u)}ud
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|G||W1|

        Haar Wavelet Modulus

H

|G||W2| H

|G||W3| H

|G||W4| H

x ? �J(2
J
k) 0 2J

�J(u)

u

 j(u)

2j0 u
|x ?  j(2

j
k)|

|W1| x
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     Haar Basis of Images

rows

columns

H

H H

G

G G

rows

columns

H

H H GG

G

rows

columns

H

HH

G

GG
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H

H

G

|G| |G||H|

H

H

G

|G||G| |H|

H

H

G

|G||G| |H|
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|G|

|G|

        Haar Wavelet Modulus

H

H

|G|

|G|

H

H

|x ?  j(2
j
k)|

H

H

|G|

|G|

|x ?  j | ? �J

||x ?  j | ?  0
j |

|W2| |W1| x

|W1|

|W2|

|W3|

|W4|

x ? �J(2
J
k)
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|G|

|G|

        Haar Wavelet Modulus

H

H

|G|

|G|

H

H

H |G|

H |G|

H

H

|G|

|G|

H |G|

|W2| |W1| x

|W1|

|W2|

|W3|

|W4|
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|G|

|G|

H

H |G|

|G|

        Haar Wavelet Modulus

H

H

|G|

|G|

H

H

H |G|

H |G|

H

H

|G|

|G|

H |G|

|W3| |W2| |W1| x

|W1|

|W2|

|W3|

|W4|
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|G|

|G|

H

H |G|

|G|

|W4| |W3| |W2| |W1| xSx =

        Haar Wavelet Modulus

H

H

|G|

|G|

H

H

H |G|

H |G|

H

H

|G|

|G|

H |G|

|W1|

|W2|

|W3|

|W4|
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Theorem:

kSx� Sx

0k  kx� x

0k et kSxk = kxk
Sx =

0

BBBB@

x ? �(u)
|x ?  �1 | ? �(u)

||x ?  �1 | ?  �2 | ? �(u)
|||x ?  �2 | ?  �2 | ?  �3 | ? �(u)

...

1

CCCCA

u,�1,�2,�3,...

S = |W4| |W3| |W2| |W1| = |W4| |W3| |W2| |W1|

kSx⌧ � Sxk  C kr⌧k1 kxk ?

        Haar Wavelet Scattering

|G|

|G|

H

H |G|

|G|

|W4| |W3| |W2| |W1| xSx =

H

H

|G|

|G|

H

H

H |G|

H |G|

H

H

|G|

|G|

H |G|

|W1|

|W2|

|W3|

|W4|

Texte
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• What is happening if (H,G) are changed ?

• How to change the invariant ?

S = |W4| |W3| |W2| |W1|

S = ⇡4 |W4|⇡3 |W3|⇡2 |W2|⇡1 |W1|

permutation ⇡1

permutation ⇡2

permutation ⇡3

permutation ⇡4

di↵erent wavelets.

change convolutions

        Wavelet Scattering

|G|

|G|

H

H |G|

|G|

x

H

H

|G|

|G|

H

H

H |G|

H |G|

H

H

|G|

|G|

H |G|

|W1|

|W2|

|W3|

|W4|

with permutations
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• Haar filtering of coe�cient pairs:

Wn

x(k)
o

kd
�!

n

x(k), x(k0)
o

(k,k0)
�!

n

x(k) + x(k0)p
2

,

x(k)� x(k0)p
2

o

(k,k0)

pairing

with optimal matching algorithms.

• Learn pairing {(k, k0)}: low-dimensional problem (no curse)

• Learning convolutions/permutations reduces to pairing.

     Learning with Haar
Xu Chen, Xiu Cheng

|W |

• Permutation invariant contraction:

n

x(k)
o

kd
�!

n

x(k), x(k0)
o

(k,k0)
�!

n

x(k) + x(k0)p
2

,

|x(k)� x(k0)|p
2

o

(k,k0)

pairing

Monday, June 23, 14



Optimal pair matching

Learned Haar Scattering:

N points

N points

Multiple trees:
increases dimension

permutation ⇡1

⇡2

⇡3

⇡4

Sx =
4Y

k=1

|Wk|⇡kx

       Learned Haar Scattering

x

|W1|

|W2| |W2|

|W3| |W3| |W3| |W3|

|W4| |W4| |W4| |W4| |W4| |W4| |W4| |W4|

The pairing defining each Wm is learned from data.
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p(x)

• Unsupervised: minimise the data volume reduction

• Sparsity minimises contraction:

||a|� |b|| = |a� b| if a = 0 or b = 0.

 Unsupervised Space Contraction

|W1|
|W2|

|W3|

the data volume: minimises a mixed l2/l1 sparsity norm.

• Pair matching algorithm finds the pairing which maximizes

• Learn S =
Q

m |Wm|
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• We want to maximize

�2(SX) = �2(
JY

m=1

|Wm|X).

• Greedy: for increasing m finds Wm which maximizes

�2(|Wm|Xm�1) with Xm�1 =
m�1Y

k=1

|Wk|X

� find a grouping which minimizes ⇥E(|Wm|Xm�1)⇥2

sparsity l2/l1 norm: build discriminative features which are

sparsely activated across realizations.

�2(|Wm|Xm�1) = E(k|Wm|Xm�1k2)� kE(|Wm|Xm�1)k2

 Learning with Optimal Contraction

Monday, June 23, 14



Examples of MNIST written digits

Permutation of digit image pixels:

Reordered Haar pairing: 100% connected for first 3 levels m = 1, 2, 3

85% for m = 4 and 65% for m = 5

Learned Haar Scattering : 0.9% errors

    Digit Image Classification

Unsupervised learning Wm for 1  m  4 yields Haar wavelets of size 24

Xu Chen, Xiu Cheng
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• Rotate MNIST digits on a 3D sphere

• Haar scattering: does not know translations and rotations

Nearest Fully connect. Local connect. Learned Haar
neighbor 2 layers 2 layers Scattering
19% 5.6% 6% 2.2 %

   Haar with Rotations

Table 2: Classification results on the MNIST-sphere dataset generated using partial rotations, for
different architectures

method Parameters Error
Nearest Neighbors N/A 19

4096-FC2048-FC512-9 10

7 5.6
4096-LRF4620-MP2000-FC300-9 8 · 105 6

4096-LRF4620-MP2000-LRF500-MP250-9 2 · 105 6.5
4096-SP32K-MP3000-FC300-9 (d1 = 2048, q = n) 9 · 105 7

4096-SP32K-MP3000-FC300-9 (d1 = 2048, q = 64) 9 · 105 6

that the smooth spectral construction consistently improves the performance, and learns spatially
localized filters, even using the naive 1-D organization of eigenvectors, which detect similar features
across different locations of the graph (panels (e)-(f)).

Finally, we consider the uniform rotation case, where now the basis U
i

is a random basis of R3. In
that case, the intra-class variability is much more severe, as seen by inspecting the performance of the
Nearest neighbor classifier. All the previously described neural network architectures significantly
improve over this classifier, although the performance is notably worse than in the mild rotation
scenario. In this case, an efficient representation needs to be fully roto-translation invariant. Since
this is a non-commutative group, it is likely that deeper architectures perform better than the models
considered here.

(a) (b)

Figure 7: Examples of some MNIST digits on the sphere.

(a) (b)

Figure 8: Examples of Eigenfunctions of the Graph Laplacian v20, v100

11

(Bruna, Szlam, Zaremb, LeCun)
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MNIST
Sphere MNIST

• The training set {xi, f(xi)}i is divided in K groups examples.

K

      Bagging Scattering Vectors

The aggregation Sx = {Skx}kK is a vector size KN .

A Haar scattering representation Skx is learned from each group.
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    Conclusion

• Éfficacité remarquable des réseaux de neurones profonds:
– Séparation d’échelles par ondelettes: scattering
– Métriques invariantes et stables par difféomorphismes
– Modèles de processus stationaires intermittents

• Apprentissage non-supervisé par contractions itérées.

• Grand potentiel à l’interface traitement du signal/apprentissage.
  
                  Papiers et Softwares Matlab:  

          www.di.ens.fr/data/scattering
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