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Spectral Clustering
! The study of Laplacian eigenvalues revealed the 

structure of graphs, in particular the existence of a 
partition. 

! Eigenvectors reveal how to select partitions 
! Can we make these insights more explicit and 

formulate a spectral theory of clustering ?
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Reference: U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp. 395–416, 2007.



Back to the Start: Cut and Cluster
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RatioCut(A,A) :=
1

2

C(A,A)

|A| +
1

2

C(A,A)

|A|

When cutting through edges, we can associate cost functions inspired by 
the Cheeger constant: 

NormalizedCut(A,A) =
1

2

C(A,A)

vol(A)
+

1

2

C(A,A)

vol(A)

Normalization seeks to impose balanced clusters

C(A,B) :=
X

i2A,j2B

W[i, j]



Exposing RatioCut
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min
A⇢V

RatioCut(A,A)

f [i] =

8
<

:

q
|A|/|A| if i 2 A

�
q
|A|/|A| if i 2 A

kfk =
p

|V | and hf, 1i = 0

Let’s try to solve:

Observations:

f is the indicator of the partition

fTLf = |V |RatioCut(A,A)



Exposing RatioCut
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Relaxed problem: Looking for a smooth partition function!

The following problem is equivalent to Ratiocut:

NP-hard

argmin
f

fTLf subject to kfk =
p
N, hf, 1i = 0

arg min
A⇢V

fTLf subject to kfk =
p
N, hf, 1i = 0 and f indicator of A



Exposing RatioCut
�6

argmin
f

fTLf subject to kfk =
p
N, hf, 1i = 0

Solution (G connected): eigenvector of �2

Warning: recover partition after thresholding f = sign(u2)

So we are back to the Fiedler vector !!!



RatioCut: Generalizing to k > 2
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For more than two components, we look for a set of partition functions

F 2 RN⇥k F [i, j] = fj [i] =

⇢
1/

p
|Aj | if vi 2 Aj

0 otherwise

Observe: fT
j Lfj =

Cut(Aj , Aj)

|Aj |

RatioCut(A1, . . . , Ak) = Tr(FTLF )

FTF = I

Suggests the relaxed problem:

arg min
F2RN⇥k

Tr(FTLF ) such that FTF = I



Unnormalized Spectral Clustering
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This form of relaxed RatioCut = Unnormalized Spectral Clustering

Compute the matrix F of first k eigenvectors of L 

Apply k-means to rows of F to obtain cluster assignments

Algorithm: Unnormalized Spectral Clustering

arg min
F2RN⇥k

Tr(FTLF ) such that FTF = I



Normalized Cut, k=2
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NormalizedCut(A,A) =
1

2

C(A,A)

vol(A)
+

1

2

C(A,A)

vol(A)

Check that:

f [i] =

8
<

:

q
vol(A)/vol(A) if vi 2 A

�
q

vol(A)/vol(A) otherwise

hDf, 1i = 0 fTDf = vol(G)

argmin
f

fTLf subject to fTDf = vol(G), hDf, 1i = 0

argmin
g

gTLnormg subject to kgk2 = vol(G), hg,D1/21i = 0

g = D1/2f

fTLf = vol(V )NormalizedCut(A,A)



Normalized Cut, k> 2
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F [i, j] = fj [i] =

⇢
1/

p
vol(Aj) if vi 2 Aj

0 otherwise

fT
j Lfj =

Cut(Aj , Aj)

vol(Aj)
FTF = I fT

j Dfj = 1

H = D1/2
F

Compute the matrix H of first k eigenvectors of 

Apply k-means to rows of H to obtain cluster assignments

Algorithm: Normalized Spectral Clustering

Lnorm

arg min
H2RN⇥k

Tr(HTLnormH) such that HT
H = I



Applications
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In practice normalised spectral clustering is often preferred

In practice the eigenvectors are “re-normalized” by the degrees

F = D�1/2
H

before k-means, because these are real cluster assignments

If data has k clear clusters, there will be a gap in the Laplacian  
spectrum after the k-th eigenvalue. Use to choose k.

Rem: this is equivalent to using the “random walk Laplacian”

Lrw = D�1L
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Example
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