Spectral Clustering
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Spectral Clustering

* The study of Laplacian eigenvalues revealed the
structure of graphs, in particular the existence of a

partition.
* Figenvectors reveal how to select partitions

* Can we make these insights more explicit and

formulate a spectral theory of clustering 7

Reference: U. Von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp. 395-416, 2007.
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Back to the Start: Cut and Cluster

When cutting through edges, we can associate cost functions inspired by
the Cheeger constant:

RatioCut(A4, A) := = |

2 Al 2[4
: — 1C(A, A 1C(A, A
NormalizedCut(A, A) = 5 VE)I(A)) | 5 VEﬂ(Z))

Normalization seeks to impose balanced clusters
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Exposing RatioCut

Let’s try to solve: janlr‘} RatIOCU.t(A A)
C

VIAI/IA] it e A
1A ifie

f is the indicator of the partition

Observations: f ;

0 fTLf = |V|RatioCut(4, A)

IfIl = V/|V] and (f,1) =0
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Exposing RatioCut

The following problem is equivalent to Ratiocut:

== -
— = _ _ e —

f indicator of A §

subject to || f|| = VN, (f,1) =0 and‘

argmfin fTLf subject to || f|| = VN, (f,1)=0

Relaxed problem: Looking for a smooth partition function!
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Exposing RatioCut

a,rgm}n fTLf subject to [|f]| = VN, (f,1)=0

Solution (G connected): eigenvector of Ao
Warning: recover partition after thresholding f = sign(us)

So we are back to the Fiedler vector !!!
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RatioCut: Generalizing to k > 2

For more than two components, we look for a set of partition functions

o | 1/+/|A;| if v; € A
F e RVXxk Fli, gl = fl1] = { / ’ otherw1se

Observe: fJTL fi= 1]
J

RatioCut(44,..., A) = Tr(F'LF)
Suggests the relaxed problem:

arg min Tr(F'LF) such that F'F =1
FeRNXE
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Unnormalized Spectral Clustering

This form of relaxed RatioCut = Unnormalized Spectral Clustering

arg min Tr(F'LF) such that F'F =1
FeRNXk

Algorithm: Unnormalized Spectral Clustering

Compute the matrix F of first k eigenvectors of L

Apply k-means to rows of F to obtain cluster assignments
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Normalized Cut, k=2

| . 1C(A4) 1044
NormalizedCut(A, A) = 9 VE)l(A)) | 9 VE)l(Z))

£li] = \/VOI( )/vol(A) ifv;, € A
—\/ vol(A)/vol(A) otherwise

Check that: (Df,1) =0 fTDf = vol(G)
fTLf = vol(V)NormalizedCut(A, A)

argmfin fYLf subject to ffDf =vol(G), (Df,1)=0

g=D'?f

arg min g° Lpormg subject to [|g||? = vol(G), (g, D*?1) =0
g
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Normalized Cut, k> 2

Fi = i = { VI e

FTF =1 fiDfj=1

g, = )
J

vol(A

arg min Tr(H Lo H) such that H'H =1  H =D2F
HERNXk

Algorithm: Normalized Spectral Clustering

Compute the matrix H of first k eigenvectors of Ly orm

Apply k-means to rows of H to obtain cluster assignments
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Applications

In practice normalised spectral clustering is often preferred

In practice the eigenvectors are “re-normalized” by the degrees

F=D"Y2H

before k-means, because these are real cluster assignments

Rem: this is equivalent to using the “random walk Laplacian”
L., =D 'L

If data has k clear clusters, there will be a gap in the Laplacian
spectrum after the k-th eigenvalue. Use to choose k.

ol @ m(

FEDERALE D7 LAUSANNE




12

HCr

FCOLE POLY TECHNIQUE
FEDERALE D7 LAUSANNE



13

Example
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