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Goal

Given partially observed information at the nodes of a graph

Can we robustly and efficiently infer missing information 7

What signal model ?
How many observations 7

Influence of the structure of the graph 7



Notations

G =1{V,E,W} weighted, undirected

) is the set of n nodes
£ 1s the set of edges

W € R™*" is the weighted adjacency matrix

L € R**"
combinatorial graph Laplacian L :=D — W

normalised Laplacian L := 1 — D~1/2WD~1/2

diagonal degree matrix D has entries d; := ZZ-#]- Wi;



SP on Graphs Cheat Sheet

x € R™ a (scalar valued) signal

L € R™"*"™
L = UAUT
X\

Graph Fourier Frequencies

Laplacian
— ~A
— A\ = FLWEF

Filter and Filtering



Notations

L is real, symmetric PSD

orthonormal eigenvectors U € R™*™ Graph Fourier Matrix

non-negative eigenvalues Ay < Ao < ..., A\,

L = UAUT



Notations

L is real, symmetric PSD

orthonormal eigenvectors U € R™*™ Graph Fourier Matrix

non-negative eigenvalues Ay < Ao < ..., A\,

L = UAUT

k-bandlimited signals x € R"

Fourier coefficients r=UTx

T — UkCIAZk Cﬁk ~ ]Rk

. nxk
Uk T (u17 c v 7“’/6) S R first k eigenvectors only
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p € R"

Sampling Model

pi >0 Ipll, = > _ .



Sampling Model

peR” p;>0  |pl,=> pi=
P .= diag(p) € R"*"

Draw independently m samples (random sampling)

Plw;=1)=p;, Vjed{l,...,m}andVie{l,...,n}
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Sampling Model

UTdill,  [lUEaill,
UTo; 2 H‘SzHQ

= [[Udill,

How much a perfect impulse can be concentrated on first k eigenvectors

Carries interesting information about the graph

Ideally:  p; large wherever ||U]4;|, is large

Graph Coherence



Stable Embedding

Theorem 1 (Restricted isometry property). Let M be a random subsampling
matriz with the sampling distribution p. For any §,¢ € (0,1), with probability
at least 1 — e,

1—46 2 o L lyp-1/2 2<1 5 2 1
( )Hszxm x 2\( +90) ||]5 (1)

for all € span(Uy) provided that

> g 1o () 2)
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Stable Embedding

Theorem 1 (Restricted isometry property). Let M be a random subsampling
matriz with the sampling distribution p. For any §,¢ € (0,1), with probability
at least 1 — e,

1—46 2 o L lyp-1/2 2<1 5 2 1
( )HCL’Hz\m x 2\( +90) ||]5 (1)

for all € span(Uy) provided that

3 2k
> g 1o () 2)
MP~/2 g = Pél/zl\/la: Only need M, re-weighting offline
(Vg)z >k Need to sample at least k£ nodes

Proof similar to CS in bounded ONB but simpler since model is a subspace (not a ugion)



Stable Embedding

)2 >k Need to sample at least k nodes
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Stable Embedding

(V]];)2 >k Need to sample at least k nodes

Can we reduce to optimal amount ?

10



Stable Embedding

(Vp)2 >k Need to sample at least k nodes

Can we reduce to optimal amount ?

uTe,l”
. g |I27 A

Variable Density Sampling J P R 0]

is such that: (yl;)2 — k& and depends on structure of graph
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Stable Embedding

(V]];)2 >k Need to sample at least k nodes

Can we reduce to optimal amount ?

|UESill,
Variable Density Sampling — p7 := kk 2, 1 =1

7...,

is such that: (y£)2 — k& and depends on structure of graph

Corollary 1. Let M be a random subsampling matrix constructed with the sam-
pling distribution p*. For any d,€ € (0,1), with probability at least 1 — ¢,
2

2 1 — 2
(=0l < —|[MP™2 2| < (149) |3

for all € span(Uy) provided that

3 2k
m}iklog(—>. 10

€



Recovery Procedures (Inference)

y=Mzx+n y e R™

x € span(Ug) stable embedding
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Recovery Procedures (Inference)

y=Mzx+n y e R™

x € span(Ug) stable embedding

Standard Decoder

min
z€span(Uy)

Pg_zl/2 (Mz — y)H2
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Recovery Procedures (Inference)

y=Mzx+n y e R™

x € span(Ug) stable embedding

Standard Decoder

min
z€span(Uy)

7

need projector

P51/2 (Mz — y)H2
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Recovery Procedures (Inference)

y=Mzx+n y e R™

x € span(Ug) stable embedding

Standard Decoder

min P51/2 (Mz—y)”
2

z€espan(Ug) \

re-weighting for RIP

need projector
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Recovery Procedures (Inference)

y=Mzx+n y € R™

x € span(Ug) stable embedding
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Recovery Procedures (Inference)

y=Mzx+n y € R™

x € span(Ug) stable embedding

Efficient Decoder:

2
Po? (Mz — y)H2 + v 2Tg(L)z

min
z€ER™
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Recovery Procedures (Inference)

y=Mzx+n y € R™

x € span(Ug) stable embedding

Efficient Decoder:

min ||Pg*/? (I\/lz—y)H2—|— ’ (L)
zern || 2 S

soft constrain on frequencies

efficient implementation
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Analysis of Standard Decoder
Standard Decoder:

min
z€span(Uyg)

P51/2 (Mz — y)H2
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Analysis of Standard Decoder
Standard Decoder:

min HP;/2 (Mz — y)H

z€span(Uyg) 2

Theorem 1. Let €2 be a set of m indices selected independently from {1,...,n}
with sampling distribution p € R™, and M the associated sampling matriz. Let
e,6 € (0,1) and m > & (vF)? log (28). With probability at least 1 — ¢, the
following holds for all € span(Uy) and all m € R™.

i) Let x* be the solution of Standard Decoder with y = Mx + n. Then,

/m (21 —)) [Pa'*nl, L)

|z* — 33“2 <

it) There exist particular vectors ng € R™ such that the solution x* of Stan-
dard Decoder with y = Mx 4+ ng satisfies

|| |Pa' o] - 2)

1
" — x|, >
- Vm (1 +6)
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Theorem 1. Let €2 be a set of m indices selected independently from {1,...,n}
with sampling distribution p € R™, and M the associated sampling matriz. Let
e,6 € (0,1) and m > & (vF)? log (28). With probability at least 1 — ¢, the
following holds for all € span(Uy) and all m € R™.

i) Let x* be the solution of Standard Decoder with y = Mx +n. Then,

(1)

Exact recovery when noiseless gy e .

it) There exist particular vectors ng € R™ such that the solution x* of Stan-
dard Decoder with y = Mx 4+ ng satisfies

H |Pa' o] - 2)

1
" — x|, >
- Vm (1 +6)

13



Analysis of Standard Decoder

Standard Decoder:

min HP;/2 (Mz — y)H

z€span(Uyg) 2

Theorem 1. Let €2 be a set of m indices selected independently from {1,...,n}
with sampling distribution p € R™, and M the associated sampling matriz. Let
e,6 € (0,1) and m > & (vF)? log (28). With probability at least 1 — ¢, the
following holds for all € span(Uy) and all m € R™.

i) Let x* be the solution of Standard eoe with y = Mx +n. Then,

(1)
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Analysis of Efficient Decoder
Efficient Decoder:

min

P (Mz — y)H2 +v2Tg(L)z
zER™ Y 2

non-negative
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Analysis of Efficient Decoder
Efficient Decoder:

min

P_1/2 (Mz — y)H2 -+ "(L
2CRn Q 5

Ynon-negatives

Filter reshapes Fourier coefficients

A

h:R—R xp := Udiag(h)UTx € R"
h=(h(A1),...,h(A))T € R"
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Analysis of Efficient Decoder

Efficient Decoder:

2
min
z€cR"

P§1/2 (Mz — y)H

of 2T g(L)z

Filter reshapes Fourier coefficients

A

h:R—R xp := Udiag(h)UTx € R"
h=(h(A1),...,h(A))T € R"

d d
p(t) = Z oy t! x, = Udiag(p) UTx = Zozz- L'a
i=0 i=0

Pick special polynomials and use e.g. recurrence relations for fast

filtering (with sparse matrix-vector multiply only)



Analysis of Efficient Decoder
Efficient Decoder:

min

P_1/2 (I\/Iz — y)H2 -+
ZGR” Q 2

Ynon-negatives

non-decreasing = /

penalizes high-frequencies
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Analysis of Efficient Decoder

Efficient Decoder:

P (Mz — y)H +942Tg(L)z 3

min

z€cR" 2

non-decreasing — /

penalizes high-frequencies

Favours reconstruction of approximately band-limited signals

Ideal filter yields Standard Decoder

: (t) o 0 if t € [O,)\k],
P o otherwise,

15



Analysis of Efficient Decoder

Theorem 1. Let 2, M, P, m as before and M., > 0 be a constant such
that HI\/IP_l/QH2 < Muyax- Let €,6 € (0,1). With probability at least 1 — €, the
following holds for all € span(Uy), all n € R™, all v > 0, and all nonnegative

and nondecreasing polynomial functions g such that g(Agy1) > 0.
Let x* be the solution of Efficient Decoder with y = Max + n. Then,

1 M ax _
o — ], < 2+ |Po*n|
m(1 —0) V79 Akt1) 2

+ (Mmax g?iz‘f_)l) + %Ww)) w2] 7
(1)

and

. 1 ~1/2,
18], < <|Pa” Sl 2)

where a* = UpU] x* and B* :== (I — UxU])
16



Analysis of Efficient Decoder

Noiseless case:

_ 1 9(Ax) . 9Ak)
lz* — [, < D) (Mmax\/g(AkH) + 79(>w)> e[|, + \/g(AkH) [EIP"

g(Ar) =0 + non-decreasing implies perfect reconstruction

17



Analysis of Efficient Decoder

Noiseless case:

: 1 9(A) 9(M)
ot el <~ (Mmax\/gwﬂﬁ 79(>w)> “"’”'ﬁ\/gukﬂ) =,

g(Ar) =0 + non-decreasing implies perfect reconstruction

Otherwise:
choose v as close as possible to 0 and seek to minimise the ratio g(Ax)/g(Ag+1)

Choose filter to increase spectral gap 7

Clusters are of course good

. —1/2
Noise: 1PoY nll2/ ||z,

17



Estimating the Optimal Distribution



Estimating the Optimal Distribution

Need to estimate HUM\@
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Estimating the Optimal Distribution

Need to estimate HU;(S’LH%

Filter random signals with ideal low-pass filter:

Tox, = U diag(A1,..., A%, 0,...,0) UTr = UgU] r

E(rey, )i = 67UUL E(rrT) ULULS; = T8
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Estimating the Optimal Distribution

Need to estimate HUZ&H%

Filter random signals with ideal low-pass filter:

AL = Udiag()\l,...,)\k,()j,ujo) UT » = UkUZ’r‘

Ty

E(re,, )i = 67UrUL E(rrT) ULUT4; = ||UT&3

In practice, one may use a polynomial approximation of the ideal filter and:

S ()2
Zz 1Zl 1( cAk)

C 2n
L > ]
52 Og(e) 18

ﬁz'i



Estimating the Eigengap



Estimating the Eigengap

Again, low-pass filtering random signals:

n

n n L
A=) S ULa)? < % ()2 < (14+0) S ule]
=1

1=1 [=1 1=1

19



Estimating the Eigengap

Again, low-pass filtering random signals:

n n L n
—0) Y uLall < YD () < 1+ Y |Julai
i=1 =1

=1 [=1

mn
Since: 3 U8l = U+ Iy, = 57
1=1

L

We have: (1 —0 ZZ 7“(,A (1+9) "

1=1 [=1

N

Dichotomy using the filter bandwidth

19



Experiments

Community graph
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Experiments
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Experiments

Commurity graph Cp, - & = 10
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Experiments

{a) (b)

Original Revcorstructed (sarpling with 5)

7%
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

. 4+2p
= €2/2 —e3/3

by Johnson-Lindenstrauss logn

|
“"i

.
& ®
-
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

4428

by Joh -Lindenst =
y Johnson-Lindenstrauss 7 73— (373

logn

Each feature map is smooth, therefore keep

6 5 k
m>5—2Vk log 7

Use k-means on compressed data and feed into Efficient Decodezs



Compressive Spectral Clustering

recovery pesformance for k=20; e=e ¢:IB; and Lrec

39
a7
35 0.9
33
.
31
- 0.8
27
2 0.7
s .
=2
19 0.6
17
15
13 0.5
1
0.4
log Lk =m m | 0.3
i Nsu
klog k
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Conclusion

Stable, robust and universal random sampling of smoothly
varying information on graphs.

Tractable decoder with guarantees
Optimal sampling distribution depends on graph structure

Can be used for inference, (SVD less) compressive clustering



Thank you !



