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Goal
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Given partially observed information at the nodes of a graph

?

Can we robustly and efficiently infer missing information ?

What signal model ?

Influence of the structure of the graph ?

How many observations ?



Notations
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G = {V, E ,W}

V is the set of n nodes

E is the set of edges

W 2 Rn⇥n is the weighted adjacency matrix

L 2 Rn⇥n

combinatorial graph Laplacian L := D�W

normalised Laplacian L := I� D�1/2WD�1/2

diagonal degree matrix D has entries di :=
P

i 6=j Wij

weighted, undirected



SP on Graphs Cheat Sheet
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x 2 Rn a (scalar valued) signal

L 2 Rn⇥n
Laplacian

L = U⇤U|

Graph Fourier Frequencies

g(L) = Ug(⇤)U|

g(L)x

\g(L)x(k) = g(�k)x̂(k)

��

�� = FT!2F

g ? x

[g ? x(!) = ĝ(!)x̂(!)

Filter and Filtering
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�5

L is real, symmetric PSD

orthonormal eigenvectors U 2 Rn⇥n

non-negative eigenvalues �1 6 �2 6 . . . ,�n

L = U⇤U|

Graph Fourier Matrix

k-bandlimited signals x 2 Rn

x̂ = U|xFourier coefficients

x = Ukx̂
k x̂k 2 Rk

Uk := (u1, . . . ,uk) 2 Rn⇥k
first k eigenvectors only
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white noise band-limited approximation
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p 2 Rn pi > 0 kpk1 =
nX

i=1

pi = 1

P := diag(p) 2 Rn⇥n
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p 2 Rn pi > 0 kpk1 =
nX

i=1

pi = 1

P := diag(p) 2 Rn⇥n

P(!j = i) = pi, 8j 2 {1, . . . ,m} and 8i 2 {1, . . . , n}

Draw independently m samples (random sampling) 

yj := x!j , 8j 2 {1, . . . ,m}

y = Mx
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Sampling Model
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kU|
k�ik2

kU|�ik2
=

kU|
k�ik2

k�ik2
= kU|

k�ik2

How much a perfect impulse can be concentrated on first k eigenvectors

Carries interesting information about the graph

Ideally: pi large wherever kU|
k�ik2 is large

Graph Coherence

⌫kp := max
16i6n

n
p�1/2
i kU|

k�ik2
o

⌫kp >
p
kRem:



Stable Embedding 
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Theorem 1 (Restricted isometry property). Let M be a random subsampling
matrix with the sampling distribution p. For any �, ✏ 2 (0, 1), with probability
at least 1� ✏,

(1� �) kxk22 6 1

m

���MP�1/2 x
���
2

2
6 (1 + �) kxk22 (1)

for all x 2 span(Uk) provided that

m > 3

�2
(⌫kp)

2 log

✓
2k

✏

◆
. (2)
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Theorem 1 (Restricted isometry property). Let M be a random subsampling
matrix with the sampling distribution p. For any �, ✏ 2 (0, 1), with probability
at least 1� ✏,

(1� �) kxk22 6 1
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◆
. (2)

MP�1/2 x = P�1/2
⌦ Mx Only need M, re-weighting offline

(⌫kp)
2 > k Need to sample at least k nodes

Proof similar to CS in bounded ONB but simpler since model is a subspace (not a union)
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k�ik

2
2

k
, i = 1, . . . , n

is such that: (⌫kp)
2 = k and depends on structure of graph



Stable Embedding 
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(⌫kp)
2 > k Need to sample at least k nodes

Can we reduce to optimal amount ? 

Corollary 1. Let M be a random subsampling matrix constructed with the sam-
pling distribution p⇤. For any �, ✏ 2 (0, 1), with probability at least 1� ✏,

(1� �) kxk22 6 1

m

���MP�1/2 x
���
2

2
6 (1 + �) kxk22

for all x 2 span(Uk) provided that

m > 3

�2
k log

✓
2k

✏

◆
.

Variable Density Sampling p⇤
i :=

kU|
k�ik

2
2

k
, i = 1, . . . , n

is such that: (⌫kp)
2 = k and depends on structure of graph
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y = Mx+ n

x 2 span(Uk)

y 2 Rm

stable embedding

min
z2span(Uk)

���P�1/2
⌦ (Mz � y)

���
2

Standard Decoder

need projector
re-weighting for RIP
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Recovery Procedures (Inference)
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y = Mx+ n

x 2 span(Uk)

y 2 Rm

stable embedding

Efficient Decoder:

min
z2Rn

���P�1/2
⌦ (Mz � y)

���
2

2
+ � z|g(L)z

soft constrain on frequencies

efficient implementation
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min
z2span(Uk)

���P�1/2
⌦ (Mz � y)

���
2

Standard Decoder:

Theorem 1. Let ⌦ be a set of m indices selected independently from {1, . . . , n}
with sampling distribution p 2 Rn, and M the associated sampling matrix. Let
✏, � 2 (0, 1) and m > 3

�2 (⌫kp)
2 log

�
2k
✏

�
. With probability at least 1 � ✏, the

following holds for all x 2 span(Uk) and all n 2 Rm.

i) Let x⇤ be the solution of Standard Decoder with y = Mx+ n. Then,

kx⇤ � xk2 6 2p
m (1� �)

���P�1/2
⌦ n

���
2
. (1)

ii) There exist particular vectors n0 2 Rm such that the solution x⇤ of Stan-
dard Decoder with y = Mx+ n0 satisfies

kx⇤ � xk2 > 1p
m (1 + �)

���P�1/2
⌦ n0

���
2
. (2)
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2
+ � z|g(L)z

non-negative
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Efficient Decoder:

min
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non-negative

h : R ! R xh := U diag(ĥ)U|x 2 Rn

ĥ = (h(�1), . . . , h(�n))
| 2 Rn

Filter reshapes Fourier coefficients
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Efficient Decoder:

min
z2Rn

���P�1/2
⌦ (Mz � y)

���
2

2
+ � z|g(L)z

p(t) =
dX

i=0

↵i t
i xp = U diag(p̂)U|x =

dX

i=0

↵i L
ix

Pick special polynomials and use e.g. recurrence relations for fast 
filtering (with sparse matrix-vector multiply only)

non-negative

h : R ! R xh := U diag(ĥ)U|x 2 Rn

ĥ = (h(�1), . . . , h(�n))
| 2 Rn

Filter reshapes Fourier coefficients
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Efficient Decoder:

min
z2Rn

���P�1/2
⌦ (Mz � y)

���
2

2
+ � z|g(L)z

non-negative

non-decreasing = 
penalizes high-frequencies

Favours reconstruction of approximately band-limited signals

i�k(t) :=

⇢
0 if t 2 [0,�k],
+1 otherwise,

Ideal filter yields Standard Decoder



Analysis of Efficient Decoder
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Theorem 1. Let ⌦, M, P, m as before and Mmax > 0 be a constant such
that

��MP�1/2
��
2
6 Mmax. Let ✏, � 2 (0, 1). With probability at least 1 � ✏, the

following holds for all x 2 span(Uk), all n 2 Rn, all � > 0, and all nonnegative
and nondecreasing polynomial functions g such that g(�k+1) > 0.

Let x⇤ be the solution of E�cient Decoder with y = Mx+ n. Then,

k↵⇤ � xk2 6 1p
m(1� �)

" 
2 +

Mmaxp
�g(�k+1)

!���P�1/2
⌦ n

���
2

+

 
Mmax

s
g(�k)

g(�k+1)
+
p

�g(�k)

!
kxk2

#
,

(1)

and

k�⇤k2 6 1p
�g(�k+1)

���P�1/2
⌦ n

���
2
+

s
g(�k)

g(�k+1)
kxk2 , (2)

where ↵⇤ := UkU
|
k x

⇤ and �⇤ := (I� UkU
|
k)x

⇤.
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p
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!
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g(�k) = 0

Noiseless case:

kx⇤ � xk2 6 1p
m(1� �)

 
Mmax

s
g(�k)

g(�k+1)
+
p

�g(�k)

!
kxk2 +

s
g(�k)

g(�k+1)
kxk2

+ non-decreasing implies perfect reconstruction

choose � as close as possible to 0 and seek to minimise the ratio g(�k)/g(�k+1)

Otherwise:

Choose filter to increase spectral gap ?

Clusters are of course good

Noise: kP�1/2
⌦ nk2/ kxk2
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Estimating the Optimal Distribution
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rb�k
= U diag(�1, . . . ,�k, 0, . . . , 0) U

| r = UkU
|
k r

Filter random signals with ideal low-pass filter:

E (rb�k
)2i = �|i UkU

|
k E(rr|) UkU

|
k�i = kU|

k�ik
2
2

p̃i :=

PL
l=1 (rlc�k

)2i
Pn

i=1

PL
l=1 (rlc�k

)2i

In practice, one may use a polynomial approximation of the ideal filter and:

L > C

�2
log

✓
2n

✏

◆

Need to estimate kU|
k�ik

2
2
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(1� �)
nX

i=1

��U|
j⇤�i

��2
2

6
nX

i=1

LX

l=1

(rlb�)
2
i 6 (1 + �)

nX

i=1

��U|
j⇤�i

��2
2

Again, low-pass filtering random signals:
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(1� �)
nX

i=1

��U|
j⇤�i

��2
2

6
nX

i=1

LX

l=1

(rlb�)
2
i 6 (1 + �)

nX

i=1

��U|
j⇤�i

��2
2

Again, low-pass filtering random signals:

nX

i=1

��U|
j⇤�i

��2
2
= kUj⇤k2Frob = j⇤Since:

(1� �) j⇤ 6
nX

i=1

LX

l=1

(rlb�)
2
i 6 (1 + �) j⇤We have:

Dichotomy using the filter bandwidth
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unbalanced clusters
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7%
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Compressive Spectral Clustering
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Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

by Johnson-Lindenstrauss ⌘ =
4 + 2�

✏2/2� ✏3/3
log n

Use k-means on compressed data and feed into Efficient Decoder 

Each feature map is smooth, therefore keep

m > 6

�2
⌫2k log

✓
k

✏0

◆



Compressive Spectral Clustering

�26
k log k

log k
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Conclusion

• Stable, robust and universal random sampling of smoothly 
varying information on graphs.
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• Tractable decoder with guarantees

• Optimal sampling distribution depends on graph structure

• Can be used for inference, (SVD less) compressive clustering



Thank you !
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