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CREATION FROM RANDOM NUMBERS

Creative Adversarial Networks (CAN)

Abstract Art

Cubism 

High Renaissance

New style



Principle of least effort: Wundt curve
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When AI meets fashion...



FACEBOOK

• Create unexpected products

• Exploit data library of past collections to 

propose new products consistent with 

the brand DNA. 

• Acquire new expertise

FASHION BRANDS

• FAIR: Advance state of the art in machine 

intelligence

• Unlocking ways for AI to enhance 

creativity could enable new ways for 

people to express themselves creatively

Motivations for this project



RELATED WORK 1

FACEBOOK RESEARCH │ DESIGN

TOWARD BETTER RECONSTRUCTION OF 

STYLE IMAGES WITH GANS. ALEXANDER 

LORBERT ET AL.

A GENERATIVE MODEL OF PEOPLE IN 

CLOTHING, CHRISTOPH LASSNER ET 

AL. 



RELATED WORK 2

FACEBOOK RESEARCH │ DESIGN

BE YOUR OWN PRADA: FASHION 

SYNTHESIS WITH STRUCTURAL 

COHERENCE. SHIZHAN ZHU ET AL. 

PIX2PIX: IMAGE-TO-IMAGE TRANSLATION. 

PHILLIP ISOLA ET AL., 

DETERMINISTIC IMAGE TO 

IMAGE MAPPING



Generative Adversarial networks (GAN)
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Deep convolutional GANs
RADFORD ET AL : ICLR 2015 



Training with pictures of about 2000 Clothing items



Shape and texture creativity
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Texture classification



Shape classification

DRESS SKIRT JACKET

PULLOVER T-SHIRT COAT TOP
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Before After



A holistic creativity Criterion
TO DEVIATE FROM EXISTING SHAPES AND TEXTURES
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Optimization objectives

• Generator’s loss

• Discriminator’s loss

• auxiliary classifier 
discriminator:

• Additional loss for 
the generator:



CAN and CAN(H) losses

Multi-class cross entropy loss:

Binary cross entropy loss :



Conditioning on shapes
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Evaluation



OVERALL LIKABILITY (%)
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Creative Models are Most Popular

NOVELTY0 1

LIKEABILITY
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"interesting" Shapes



Takeaways

Introduced Creative Image Modeling for a Non-Abstract Artistic Task

Creativity Criterion Lead to More Popular Results

Modeled Multiple Design Elements: Shape and Texture



What's next

Improve Stability of Generative Networks

Evaluation Remains an Open Research Problem

Higher Resolution

Factorization of Elements of Designs



http://arxiv.org/abs/1804.00921

Sbai, Elhoseiny, Bordes, LeCun, Couprie: 

``DeSIGN: Design Inspiration from 

Generative Networks ' '

Camile to Provide Paper Screenshot
Here



Future video prediction
With Pauline Luc, Michael Mathieu, Natalia Neverova, 

Yann LeCun and Jakob Verbeek (INRIA)



Motivation
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• Building internal representations that model the image evolution 

accurately, its content and dynamics.

• We postulate that the better the predictions of such system are, 

the better the feature representation should be.

• Representations learned through prediction of future sequences 

have been shown to lead to improvements in weakly supervised 

and even fully supervised tasks (e.g. [Srivastava et al. ICML'15])

MOTIVATION

45



Agenda

Future instance prediction3

Joint future instance and semantic 

segmentation prediction4

Future semantic segmentation 

prediction2

Future image prediction1



1) Predicting next frames in videos  
MICHAEL MATHIEU, CAMILLE COUPRIE, YANN LECUN, ICLR16

4 INPUT IMAGES                                 OUR 2 PREDICTIONS



Our contributions

• Result with a simple convolutional network trained 

minimizing an l2 loss

•OUR RESULT USING 
•A MULTISCALE ARCHITECTURE 

•AN IMAGE GRADIENT DIFFERENT LOSS
•USE ADVERSARIAL TRAINING 
[GOODFELLOW ET AL’14]



MULTISCALE ARCHITECTURE

49



ADVERSARIAL TRAINING
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GRADIENT DIFFERENCE LOSS

51



RESULTS ON THE UCF101 DATASET 
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RESULTS ON THE UCF101 DATASET 
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COMPARISONS WITH BASELINES

54



Towards longer term predictions

• Predictions in the RGB space 

quickly become blury despites 

previous attempts 

• Idea: predict in the space of 

semantic segmentation



2) Predicting Deeper into the Future of 

Semantic Segmentation

• Use a state-of-the-art semantic 

segmentation network to obtain densely 

segmented input / target sequences, e.g. 

Dilation10, [Yu et al.’16].

Specifically, use the softmax pre-

activations, i.e. the (continuous) outputs 

of the last convolutional layer, before the 

softmax

P. LUC, N. NEVEROVA, C. COUPRIE, J. VERBEEK, Y. LECUN, ICCV’17
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Setting and dataset presentation

4 INPUT IMAGES                                 OUR 2 PREDICTIONS

CITYSCAPES DATASET 
[CORDTS ET AL.’16]



Approach – predicting deeper into the future

Single time-step

AUTOREGRESSIVE 
MODEL

BATCH MODEL

St−3 St−2 St−1 St St+1

Lt+1

St−3 St−2 St−1 St St+1 St+2 St+3

Lt+1 Lt+2 Lt+3

St−3 St−2 St−1 St St+1 St+2 St+3

Lt+1 Lt+2 Lt+3

AUTOREGRESSIVE MODEL IS 

EITHER :

• USED FOR INFERENCE 

WITHOUT ADDITIONAL 

TRAINING (W.R.T. TO 

SINGLE TIME STEP 

MODEL) AR

• FINE-TUNED USING BPTT 

AR FINE-TUNE

AUTOREGRESSIVE MODE IS 

ONLY POSSIBLE FOR X2X, 

S2S, XS2XS

SAME COLOR = SHARED WEIGHTS
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Quantitative results

59

BASELINES :
•COPY THE LAST INPUT 
FRAME TO THE OUTPUT

•ESTIMATE FLOW BETWEEN 
THE TWO LAST INPUTS, AND 
PROJECT THE LAST INPUT 
FORWARD USING THE FLOW

PERFORMANCE MEASURE (MEAN IOU) OF OUR 
APPROACH AND BASELINES 

•

• Showed experimentally that it is a better setting:

Autoregressive BatchRGB

Semantic 

segmentation
Autoregressive Batch

<

>

:

:



Mid term segmentation predictions (0.5 s)
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FLOW BASELINE

OUR AUTOREGRESSIVE FINE-TUNE RESULT

LAST INPUT        GROUND TRUTH



Mid term segmentation predictions (0.5 s)

61

FLOW BASELINE

OUR AUTOREGRESSIVE FINE-TUNE RESULT



Long term prediction (10 s) & going further
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Figure 6: Last input segmentation, and ground truth segmentations at 1, 4, 7, and 10 seconds into the future (top row), and

corresponding predictions of the autoregressive S2S model trained with fine-tuning (bottom row).
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Instance level segmentation: Mask RCNN

• Extends Faster RCNN [Ren et al.’15] by 

adding a branch for predicting an object 

mask in parallel with the existing branch 

for bounding box recognition

K. HE G. GKIOXARI P. DOLLAR R. GIRSHICK’17

10



Instance level segmentation: Mask RCNN
K. HE G. GKIOXARI P. DOLLAR R. GIRSHICK’17

10



3) Predicting Future Instance Segmentations  
by Forecasting Convolutional Features

car 1.00

bicycle 0.92
bicycle 0.97

person 0.99person 0.97person 0.98 person 0.93person 0.72

person 0.97

bicycle 1.00

person 0.76
person 0.97

person 0.99person 0.98person 0.99
person 0.94

person 0.91 person 1.00 person 0.56person 0.84

LUC, NEVEROVA ET AL. ICCV17 NEW ECCV SUBMISSION: F2F PREDICTIONS

P. LUC, C. COUPRIE, Y. LECUN, J. VERBEEK, ARXIV 2018



Results
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4) Joint semantic and instance 

segmentation
Inputs

...

t− 1

t

Semantic and

instance

segmentations

from Mask RCNN

...

St−1

St

D2D

model

Convnet

Outputs

t+ 1

Future semantic

segmentation St+1

Future instance

segmentation It+1



Overview of our approach

• 1) Computation of distance map 

based representations r(t), r(t-1), …

• 2) Training a convnet to predict 

future representations r(t+1)

• 3) Object centroids extraction and 

linear extrapolation

• 4) Computing instance 

segmentations using centroids as 

seeds, and map of maxima of r(t+1) as 

weights

• 5) Computing the semantic 

segmentation map as the 

argmax of r(t+1)



Results



4) Joint semantic and instance 

segmentation



Conclusions

Introduced generic approaches for video prediction 

Many problems remain, e.g. handling occlusions

Non deterministic models




