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Creative Adversarial Networks (CAN)

CREATION FROM RANDOM NUMBERS

High Renaissance

Abstract Art

New style

Cubism




Principle of least effort: Wundt curve
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FACEBOOK FASHION BRANDS

FAIR: Advance state of the art in machine - Create unexpected products

intelligence . Exploit data library of past collections to

Unlocking ways for Al to enhance propose nhew products consistent with

creativity could enable new ways for the brand DNA.
people to express themselves creatively

Acquire new expertise



RELATED WORK 1

A GENERATIVE MODEL OF PEOPLE IN
CLOTHING, CHRISTOPH LASSNER ET
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TOWARD BETTER RECONSTRUCTION OF
STYLE IMAGES WITH GANS. ALEXANDER

LORBERT ET AL.




RELATED WORK 2

BE YOUR OWN PRADA: FASHION PIX2P1X: IMAGE-TO-IMAGE TRANSLATION .
SYNTHESIS WITH STRUCTURAL PHILLIP ISOLA ET AL.,

COHERENCE. SHIZHAN ZHU ET AL. Input Ground truth

Output

Text Entry 1:

The woman is
wearing in beige with
long sleeves.

Text Entry 2:

The lady was wearing
a multicolored long-
sleeved coat.

Text Entry 3:
The Original The lady is wearing a
Image pink long-sleeved blouse.
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DETERMINISTIC IMAGE TO
IMAGE MAPPING

Text Entry 4:
The lady is wearing in
white with short sleeves.




Generative Adversarial networks (GAN)
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REAL INPUT
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Deep convolutional GANs
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Training with pictures of about 2000 Clothing items



Shape and texture creativity




Texture classification
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Shape classification

ORORO

DRESS SKIRT JACKET

ORORCRCY

PULLOVER T-SHIRT COAT



REAL INPUT

SHAPE CLASS
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A holistic creativity Criterion

TO DEVIATE FROM EXISTING SHAPES AND TEXTURES
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With
Creativity:
CAN(H)
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Optimization objectives

® ‘ . .
Generator’s loss noan LG real/fake = o Z log(1 — D(G(2)))
z; ER™
* Discriminator’s loss Min LD real/take =min Y —log D(z;) —log(1 — D(G(x)))
= = z;,EDz; ER™

 auxiliary classifier
S Lp = Ap L + AD, L Dclassif
dlscrlmlnatOr: r*~D real/fake b classi
 Additional loss for

Lo = AGTEG real /fake ¥ )‘GeEG creativity
the generator:



CAN and CAN(H) losses

K r =
Binary cross entropy loss : Lcan=— ) %log(a(Db,k(:vi))) + (1 Il{) log(1 — o(Dp,k(x:)))
k=1 = 2
1
Multi-class cross entropy loss: Lcanm) = — Z % log softmax(Dy(x;))
r; ED

eDb,é; (i)

1
= — — log
Z K (Zfl e Do,k (i) )




Conditioning on shapes
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Style GAN results
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Evaluation



REALISTIC
APPEARANCE

/0

64.

59

53.

48

5

60

CAN :

Human Evaluation Study

| | |
65 70 /75

OVERALL LIKABILITY (%

GAN WITH CREATIVITY LOSS, (H) STANDS FOR THE USE OF A HOLISTIC LOSS.

80



Creative Models are Most Popular

CAN (H)
78 SHAPE CAN (H)
TEXTURE

24 STYLE

CAN (H)

LIKEABILITY 7@
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JUDGED BY HUMANS AND MEASURED AS A DISTANCE TO SIMILAR TRAINING IMAGES









Takeaways

Introduced Creative Image Modeling for a Non-Abstract Artistic Task
Creativity Criterion Lead to More Popular Results

Modeled Multiple Design Elements: Shape and Texture



What's next

Improve Stability of Generative Networks
Evaluation Remains an Open Research Problem
Higher Resolution

Factorization of Elements of Designs



Sbai, Elhoseiny, Bordes, LeCun, Couprie:
“"DeSIGN: Design Inspiration from
Generative Networks '’

http://arxiv.org/abs/1804.00921

DesIGN: Design Inspiration from Generative Networks
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Abstract

Can an algorithm create original and compelling fashion
designy 10 serve as an inspirational assistant ! To help an
swer this question, we design and imvestigare different im
age generation models associared with different loss fune-
tions 1o boost creativiry in fashion generation. The dimen
sions of our explovations include: (1) differenmt Generative
Adversarial Networks architectures thar start from noise
vectors to generare fashion irems, (i) a new loss funcrion
that encourages crearivies, and (1) a generation process
following the key elements of fashion design (disemangling
shape and texture makers). A key challenge of thix study is
the evaluation of generated designs and the retrieval of best
ones, hence we put together an evaluation protocol asso
claring awtomaric metrics and human experimenmal studies
that we hope will help ease future research. We show that
our proposed crearivity losy yvields better overall appreci
ation than the one employed in Creative Adversarial Net
works In the end, abow 61% of our images are thought 1o
be created by human dexigners rather than by a compuier
while also being considered original per our human suly
fect experimenes, and our proposed loss scores the highest
compared ro existing losses in both novelty and likabiliry

1. Introduction

Artificial Intelhgence (Al) research has been making huge
progress i the machine’s capability of human level under-
standing across the spectrum of perception, reasoning and
planning [14, 1, 28], Another key yet still relatively un-
derstudied direction ix creativity where the goal is for ma-
chines to generate onginal tems with realistic, aesthetic
and/or thoughtful attributes, usually in artistic contexts, We
can indeed imagine Al to serve as inspirstion for humans
in the creative process and also to act as a sont of creative

Figure I Training generative adversanal models with ap-

propriste losses beads to realistic and creative 512 « 512
faxhion images
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assistant able to help with more mundane tasks, espoecially
in the digital domain, Previous work has explored writing
pop songs | 3], imitating the styles of great painters [9, 7] of
doodling sketches [ 12] for instance. However, it is not clear
how crearive such attempts can be considered since most
of them mainly tend 10 mimic traning samples without ex-
pressing much onginality.,

Creativity is a subjective notion that is hard to define and
eviluste, and even harder for an artificial system to opti-
mize for. Colin Martindale put down a psychology based
theory that explainy human creativity in ant [22] by con-
necting creativity or acceptability of an art prece to novelty
with “the principle of least effort™. As oniginality increases,
people like the work more and more until it becomes 100
novel and too far from standards 10 be understood. When
this happens, people do not find the work appealing any-
more because a lack of understanding and of realism leads
10 a lack of appreciation, This behavior can be llustrated
by the Wundt curve that correlates the arousal polential (1e
novelty) to hedonic responses (e.g. likability of the work)




Future video prediction

With Pauline Luc, Michael Mathieu, Natalia Neverova,

Yann LeCun and Jakob Verbeek (INRIA)



Motivation
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MOTIVATION

Building internal representations that model the image evolution

accurately, its content and dynamics.

- We postulate that the better the predictions of such system are,
the better the feature representation should be.

- Representations learned through prediction of future sequences
have been shown to lead to improvements in weakly supervised
and even fully supervised tasks (e.g. [Srivastava et al. ICML"15])

45



Agenda

Future image prediction

Future semantic segmentation
prediction

Future instance prediction

Joint future instance and semantic
segmentation prediction



1) Predicting next frames in videos
MICHAEL MATHIEU, CAMILLE COUPRIE, YANN LECUN, ICLR1G

4 INPUT IMAGES OUR 2 PREDICTIONS

Wasow




Our contributions

Result with a simple convolutional network trained
minimizing an 12 loss

conv. ReLU conv. RelLU conv. RelLU conv. RelLlU conv. Tanh

‘OUR RESULT USING
A MULTISCALE ARCHITECTURE

AN IMAGE GRADIENT DIFFERENT LOSS

USE ADVERSARIAL TRAINING
[GOODFELLOW ET AL'14]
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" Two models are trained simultaneously : the generative model
and a discriminative model that estimates the probability that
the predicted frame belongs to a real video sequence.

" Training D: Perform a SGD step to minimize

Nscales

Lo(X,Y)= > (Lace(De(Xk, Yi),1)+Lace(Di(Xk, Gk(X)).0))

k=1

where Lpgce is the binary cross-entropy loss.
" Training G: Perform a SGD step to minimize

Nscales

Lc(X,Y)= Z (/\DEBCE(Dk(Xk, Gk(Xk)), 1) + /\GLg(Vk, Yk))
k=1




Another way to avoid blurry predictions is to minimize the local

Image gradient of the true frame Y and the prediction Y at every
pixel:

GDL(Y,Y) =D |IYij=Yicrjl=Yij = Yieijl|* +||Yij—1 = Yijl = | Vij—1— Yijl|%,
i

where « Is an integer greater or equal to 1.




RESULTS ON THE UCF101 DATASET

Ground truth

| —
Eilbr

GDL /¢4 result

Adversarial result Adversarial4+GDL result

o2



RESULTS ON THE UCF101 DATASET

Input frames Ground truth

¢ result ¢4 result GDL ¢7 result

Adversarial result Adversarial+GDL result

o3



COMPARISONS WITH BASELINES

Prediction using a constant optical flow
PSNR = 24.7 (20.6), SSIM = 0.84 (0.72)

- faf b A=

Ranzato et al. result Adv GDL #1 result
PSNR = 20.1 (17.8), SSIM = 0.72 (0.65) PSNR = 24.6 (20.5), SSIM = 0.81 (0.69)

o4




Towards longer term predictions

- Predictions in the RGB space

quickly become blury despites

previous attempts

- |dea: predict in the space of

semantic segmentation



2) Predicting Deeper into the Future of
Semantic Segmentation

LUC, N. NEVEROVA, C. COUPRIE, J. VERBEEK, Y. LECUN, ICCV'1l7/

Use a state-of-the-art semantic
segmentation network to obtain densely

segmented input / target sequences, e.g.
Dilation10, [Yu et al.”16].

Specifically, use the softmax pre-
activations, i.e. the (continuous) outputs
of the last convolutional layer, before the

softmax



Setting and dataset presentation

4 INPUT IMAGES OUR 2 PREDICTIONS

CITYSCAPES DATASET
[CORDTS ET AL.’16]




Approach - predicting deeper into the future

| | AUTOREGRESSIVE MODE IS
Single time-step ONLY POSSIBLE FOR X2X.

S2S, XS2XS

AUTOREGRESSIVE MODEL IS
BATCH MODEL EITHER

« USED FOR INFERENCE

WITHOUT ADDITIONAL
TRAINING (W.R.T. TO

SINGLE TIME STEP
EGRESSIVE MODEL) AR

« FINE-TUNED USING BPTT
AR FINE-TUNE

SAME COLOR = SHARED WEIGHTS

o8



Quantitative results

PERFORMANCE I\/IEASLLJ

RE éI\/IEAN |IOU) OF OUR
APPROACH AND BASELINE
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BASELINES : ’
+COPY THE LAST INPUT .
FRAME TO THE OUTPUT '
+ESTIMATE FLOW BETWEEN .
THE TWO LAST INPUTS, AND
PROJECT THE LAST INPUT .
FORWARD USING THE FLOW o

Short term predictions (0.17s) Mid term predictions (0.5s)

¥ Frame copy ¥ Flow baselin Our method

Showed experimentally that it is a better setting:

RGB : Autoregressive < Batch

Semantic

| Autoregressive > Batch
segmentation

59
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Mid term segmentation predictions (0.5 s)

LAST INPUT GROUND TRUTH

AR fine-tune pred. att + 3 att+9

o0
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Figure 6: Last input segmentation, and ground truth segmentations at 1, 4, 7, and 10 seconds into the future (top row), and
corresponding predictions of the autoregressive S2S model trained with fine-tuning (bottom row).
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Instance level segmentation: Mask RCNN

K. HE G. GKIOXARI P. DOLLAR R. GIRSHICK’17

-  Extends Faster RCNN [Ren et al.”15] by

adding a branch for predicting an object
mask in parallel with the existing branch

for bounding box recognition
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Instance level segmentation: Mask RCNN

K. HE G. GKIOXARI P. DOLLAR R. GIRSHICK’17

Mask R-CNN backbone

256 X 32 x 64

256 x 64 x 128

F256 x 128 x 256

'

256 x 256 x 512

Mask R-CNN head

1

10



LUC, C. COUPRIE,

ICCV17/

NEVEROVA ET AL.

LUC,

Instance segmentation

—  Mask R-CNN backbone

256 x 32 x 64

b x 64 x 128

256 x 128 x 256

256 x 256 x 512

Mask R-CNN head

NEW ECCV SUBMISSION:

Prediction in feature space for
future instance segmentation

3) Predicting Future Instance Segmentations
by Forecastlng Convolutional Features

Y. LECUN, J. VERBEEK, ARXIV 2018

F2F PREDICTIONS

Pz"-'-l /

Mask R-CNN head

B
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Results

OPTICAL FLOW BASELINE OUR F2F RESULTS

Instance segmentation accuracy
(AP50)
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Semantic and
instance
segmentations

from Mask RCNN
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4) Joint semantic and instance

N

segmentation

N

Outputs

D2D
model \ \
Convnet \ segmentation [y
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Overview of our approach

1) Computation of distance map
based representations r(t), r(t-1), ...

2) Training a convnet to predict
future representations r(t+1)

3) Object centroids extraction and
linear extrapolation

4) Computing instance
segmentations using centroids as
seeds, and map of maxima of r(t+1) as
weights

5) Computing the semantic

segmentation map as the
argmax of r(t+1)
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4) Joint semantic and instance
segmentation

Mask R-CNN Optical Distance based
Feature Flow representation
Mid term sem. segm (loU) 41.2 41.4 43.0
Mid term inst. segm (NO-AP30) 16.1 9.5 10.2
Tracking included no yes yes
Training time 6 days E 1 day
Network size 65M - 0.8 M
Training hyperparam. to tune 8 - 2
Inference time some sec. 2 min some sec.

Post processing threshold hole filling, thres.  optimization




Conclusions

Introduced generic approaches for video prediction
Many problems remain, e.g. handling occlusions

Non deterministic models



Thank You.



