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Recorded Music

Definitions

m In the physical world, music is conveyed by sound waves
¢(t7 X7 y’ Z)
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Recorded Music

Definitions

m In the physical world, music is conveyed by sound waves
o(t,x,y,2)

= Analog Recorded music: time-varying signal at a fixed
space location x(t)

m Digital music: discrete-time varying signal x[n], with finite
size and quantized values
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Digital Recorded Music

Sampling and Quantization

m Discrete-time signal x[n] of length N

m Multichannel x[n, c] (e.g. stereo C = 2)
m Sampling Frequency Fe (e.g. 44100 Hz)
m Quantization width (e.g 16bits)

A typical musical track lasting 4min in PCM format weights
approx. 40MB.
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Digital Recorded Music

Compression

Lossless
Exploits time-frequency redundancies, reversible. (e.g. Flac)
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Digital Recorded Music

Compression

Lossless
Exploits time-frequency redundancies, reversible. (e.g. Flac)

Lossy
Additionnal (clever) quantization. destructive. Minimize
perceived distortion. (e.g. MP3, OGG, AAC, etc)

A typical musical track lasting 4min in MP3@128Kbps weights
approx. 4MB.
Deezer catalog is currently approx. 55 millions of audio tracks.
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MIR Tasks

In the academic community

m Detection (Onsets, Beats, Tempo, Key, Chords, etc.)
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MIR Tasks

In the academic community

m Detection (Onsets, Beats, Tempo, Key, Chords, etc.)

m Transcription (Notes, Lyrics, Score, Rythms, etc.)

= Multi-label Classification (Genre, Mood, Instrument, etc.)
m Source Separation

m Similarity and Retrieval (Fingerprinting, Cover Detection,
etc.)

m Structuration (Segmentation)
ISMIR Conference - MIREX Challenge

B S. Downie The Music Information Retrieval Evaluation
Exchange. 2008
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MIR Tasks

at Deezer

m Catalog Cleaning and Tagging
m Recommendation

m Exploration

= Making the world a better place

DEEZER
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High Dimensional Vector / Matrix

Waveform
Signal x is a CxN matrix with real entries

x[e,n] € [-1,1]

Amplitude (normalized)

2I'ime (s)

One minute long, stereo PCM at 44100Hz is a 2x2.646.000

matrix
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Symbolic Representation

Signal as a rendering of a Musical score

Amplitude (normalized)

2I'ime (s)
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Symbolic Representation

Signal as a rendering of a Musical score

%\ 100
g 075
E 0s0
5 s
£ oo
P
.
s
=4
‘ ! ’ 2I'ime (s)
[= eses8 8 s )2 o s8 8y ¥
= = - .. . S
N7 2 t v
3
I
s 3

m Signal to Score: Music Transcription*, Score Alignment
m Score to Signal : Music Synthesis
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Synthesis-oriented Representation

Midi format

Synthesis control oriented
m Time-Frequency Events with Synthesis Parameters
m Finite set of frequencies mapped to Western music scale

m Signal to Midi: Music Transcription (much less
ambiguous)

R
|

¥ A. Klapuri, M. Davy. Signal processing methods for music

transcription. 2007
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Time-Frequency Representation

Short Time Fourier Transform

Short Time Fourier Transform

m Sliding Window w of Nfft samples, Hop Size of A,
m Discrete-Time Fourier Transform of x|[n]
m Stack results in a 2D Matrix

Nfft—1 K
Xlk.p] = HZ:% win].x[n — pAn]. exp (—zlwanJ

= Complex Matrix
m Invertible under mild conditions
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Time-Frequency Representation

Short Time Fourier Transform

What it looks like:
m Magnitude Spectrogram: | X[k, p]|

5

frequency Bins
=1 =1

g
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Time-Frequency Representation

Short Time Fourier Transform

What it looks like:

m Magnitude Spectrogram: | X[k, p]|
m Log-Spectrogram— log | X[k, p]|

10766 {7 —r————

Frequency (Hz)
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Time-Frequency Representation

Short Time Fourier Transform

What about the Phase ?
m Phase Spectrogram looks random but it's not
m Absolutely crucial for intelligibility and reconstruction

m Very rarely used/considered in MIR systems using
Machine Learning

Frequency (Hz)

Time (s)
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Time-Frequency Representation
Interpretations of the STFT

Time (s)

m Discrete Filter Bank with Nfft/2 bandpass filters
m Gabor Transform (if w gaussian)
m Tight-Frame decomposition into a gabor dictionary

¥ S. Mallat A wavelet tour of signal processing. 2008
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Time-Frequency Representation

Variants of the STFT: Log-Frequency Scale

Mammal ear perceives sound frequencies in a logarithmic scale

An octave is not an absolute frequency interval, it's a ratio of 2
between the frequencies. (e.g. if A4 is 440Hz then A5 is 880Hz
and A3 is 220Hz)

m STFT has linear frequency scaling
m Time/Freq resolution is same everywhere
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Time-Frequency Representation

Variants of the STFT: Log-Frequency Scale

Constant-Q Transform

Frequency (Hz)

Time (3;3

Nfft—1 K
Xqlk,p] = ,; wi[n].x[n — pAn]. exp (—ZIWantk)
log scale for k, constant number of bins per octave.
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Outline

Classical MIR
m Speech/Music Classification
m Chords Detection
m Transcription
m Automatic Tagging
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Speech/Music Discrimination

Cepstrum and Spectral Features

are very discriminative

B

Spectral patterns
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Timbral Features

m Spectral Shape Statistics: centroid, spread, skewness and
kurtosis

m Spectral Flux: Short-Term Dynamics of the Spectrum
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Timbral Features

m Spectral Shape Statistics: centroid, spread, skewness and
kurtosis

m Spectral Flux: Short-Term Dynamics of the Spectrum

Mel Frequency Cepstral Coefficients (MFCC)

m Log-Magnitude in Mel-Scale Frequency
m Discrete Cosine Transform
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Timbral Features

Mel-Frequency Spectrum MFCC
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Uneasy Interpretation

m Time-Derivatives are often used
m In practice quite effective with simple linear classifiers
m Widely used on speech processing DEEZER



Chord Detection

Harmonic Features

m Basic: Local FFT Peaks
m Complex: Tonnetz transform
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Chord Detection

Harmonic Features

m Basic: Local FFT Peaks
m Complex: Tonnetz transform

Pitch-Class Profile (Chromagram)

m Discrete 12 tonalities scale

m Easy to obtain from a CQT: just sum up bins belonging to
same "note" on different octaves
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Chord Detection

Intuition

Chromagramme
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Chord Detection

Intuition

Chromagramme
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Chord Detection

Chromagram + HMM + Viterbi

Frequency (Hz)

Pitch class

@ K. Lee. Automatic Chord Recognition from Audio Using
Enhanced Pitch Class Profile. ICMC 2006

[ J.PBello, J. Pickens A Robust Mid-level Representation for _ DEEZER
Harmonic Content in Music Signals. ISMIR 2005 T



Chord Detection

Limits

m Becomes very hard in multi-instrumental setups
m Very sensitive to distorsions and noises

m Chord ambiguities

m Tailored for western dodecaphonism
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Transcription

Spectrogram Factorization

Non Negative Matrix Factorization

Magnitude Spectrogram as a product of Low-Rank Matrices

W is called the Template Matrix (or Dictionary) and H is called
the Activation Matrix

m Supervised/Unsupervised fix or learn one/both
= Multiplicative update rules
m A large variety of sparsity, structural and model constraints
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Spectrogram Factorization
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Music transcription with NMF

Variants and limits

Additional Constraints

® Smoothness prior on H

m Harmonic prior on W

m Sparsity on H, W, or both
m Source and Noise models

Remaining issues

m Computationaly Intensive
m Strong hypothesis: Additivity of Magnitude Spectrogram
m Component number ?
= = -DEEZER



Music transcription with NMF

Components = notes, Activations = Onsets

R. Hennequin Décomposition de spectrogrammes musicaux
informée par des modéles de synthése spectrale. PhD
Dissertation

A. Dessein, A. Cont, G. Lemaitre Real-time Polyphonic Music
Transcription with Non-negative Matrix Factorization and
Beta-divergence ISMIR 2011

B. Fuentes, R. Badeau, and G. Richard, Harmonic Adaptive
Latent Component Analysis of Audio and Application to
Music Transcription IEEE TSALP 2013
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Scaling

Can you scale a feature engineered MIR system ?

Classical Datasets

m Genre Classification: GTZAN dataset 1000 tracks
m Chord Recognition: The Beatles dataset 225 tracks
m Chord Recognition: Billboard dataset 740 tracks

m Piano Transcription: MAPS (Synthetic) a few thousands
pieces
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Scaling

Not just a size issue

Generalization

m Most datasets provide very homogeneous sounds (e.g.
Mazurka Dataset: 2700 pieces of 49 Chopin mazurkas)

m Labeled content is expensive to get
m Most music is copyrighted
= Many MIR concepts are ambiguous
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Scaling

Not just a size issue

Generalization

m Most datasets provide very homogeneous sounds (e.g.
Mazurka Dataset: 2700 pieces of 49 Chopin mazurkas)

m Labeled content is expensive to get
m Most music is copyrighted
= Many MIR concepts are ambiguous

Realistic Datasets

m Million Song Dataset (tags, usage and features but no
audio)

m Free Music Archive - 100K songs representativity issues
m AudioSet : labels from youtube video titles ... DEEZER



Automatic Tagging At Scale in a classical MIR Setup

m Stack as many features as you can (MFCC, Chromas) and
their time derivatives

m Train a classifier on as many labeled data as you can
gather

m Very poor results on truly large scale

Real Scale Data

Deezer receives between 2 and 20k audio tracks everyday. Both
volume and variety of content is not matched by publicly
available datasets.
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Outline

Deep MIR
m Convolutional and recurrent Networks

m Multi-modal learning
m Music Embedding Spaces
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The Shift

Feature Engineering as a deep architecture

Audio Signal

Filtering / ]

Mal-scala | D ling ‘ Constant-0

Modulus / Mon-Lingar | | Modulus /

Log-Scaling Operators Log-Scaling
Octave

Pooling | Equivalnca

Discrats Casing Featurs Tonal Centroid
Frojacian Projection Projection

Mree I | Tonetz :

@ E.Humphrey, J.P. Bello and Y. Lecun. Moving beyond feature
design: deep architectures and automatic feature learning in DEEZER
music informatics. ISMIR 2012 o



Convolutional Layers

Spectrograms as Oriented Images

Interesting Invariances

m Time-Translation: Same pattern at different time
localization

m For CQT: (Small) Frequency Translations: same spectral
pattern

Intuition: use rectangular filters in first layers
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Speech/Music Classification with CNNs

Work by J.Royo-Letelier in 2015

Convolutional Layers followed by Dense ones
logistic

convolutional convolutional fully fully
connected  connected  regression

input convolutional
features ~ max-pooling max-pooling max-pooling
10 feat.maps 5 feat. maps 3 feat.maps 256 units 256 units 2 units
I I I 1

I
O O
(@] @]
: : O
: O
O
O
| J

filter size filter size filter size
(10,10} {5,5) (3.3)
pooling factors pooling factor pooling factor
: 221 « = DEEZER
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Speech/Music Classification with CNNs

Work by J.Royo-Letelier in 2015

Standard Datasets for the task

m GTZAN Speech/Music: 120 tracks
= MIREX 2015 on approx 50h of audio
m MUSAN (end of 2015), 108h of audio

Deezer Dataset

m 41000 annotated audio tracks, 58.3 hours of audio

m Semi-Annotated (third party labels)

m Huge variety of sources (language, music genres,
recording conditions and audio quality)
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Speech/Music Classification with CNNs

Feeling the Gap

Compare with feature-engineering approaches

Input Shape | Training [s] | Recall | Precision | F-measure
SVM (1, 3888) 40 82.17 89.83 85.83
RF (1, 3888) 16 76.27 89.11 82.19
CNN | (3, 108, 12) 504 93.10 90.00 91.53

Our system ranked among the first 3 on MIREX 2015
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How come it works so well?

Looking at the errors

What is the kind of content that classical approaches do not
manage to classify adequatly ?

an
GRAND
CORPS
MALADE

LES BELLES HISTOIRES DE POMME D'API
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Towards End-to-End learning?

Not necessarily
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First layers seem to learn ... logarithmically spaced frequency
filters.

@ S.Dieleman and B. Schrauwen.End-to- end learning for
music audio ICASSP 2014

@ J. Pons, 0. Nieto, M. Prockup, E. Schmidt, A. Ehmann, X.
Serra End-to-end learning for music audio tagging at scale _, .neezR
ICASSP 2017



MIR with Deep Architecture at Deezer

Increasing task complexities

m Instrumental/Vocal detection

m Language Identification

® Instrument detection

m Low-Quality Encoding detection
= Mood estimation

Decisive advances

m Recurrent Networks to learn temporal dependencies
m Attention Mechanism

m Data augmentation DEEZER



MIR with Multi-modal data

How much can be inferred from audio alone?

m Instrumentation: almost certainly
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MIR with Multi-modal data

How much can be inferred from audio alone?

m Instrumentation: almost certainly
m Genre: probably

m Structure ?

m Semantics ?

= Mood ?

= = -DEEZER



Music info in a lot of other sources

m Images
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Music info in a lot of other sources

m Images
m Lyrics

"Pas d'direction, j'connais qu’la fleche de mon oint-j
Motivation, sang de fils de pute sur mon linge (fils de pute)
J'connais la chanson "sales négros, rentrez chez vous"
Billets de cing cent "sales négros, bienvenue chez nous”
(bienvenue chez nous)
J’suis plus dans I'tier-quar, Castelo de Sao Jorge
J'tire sur un pétard, c'est la violence, maux de gorge
J'ai quitté I'terrain "dealer, parfois tu nous manques"
A dit la putain que j’baise pour un G d'Hollande (pris dans la
schnek) "
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Mood Estimation

Stating the problem

Mood ?

Emotion felt by a listener when exposed to a music

m Discrete set of moods: Multilabel classification / Clustering

Adjectives

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

passionate. rousing,

confident, boisterous, rowdy

rollicking, cheerful, fun.

sweet, amiable/good natured

literate, poignant,

wistful, bittersweet, autumnal. brooding
humorous, silly, campy,

quirky. whimsical, witty, wry
aggressive, fiery, tense/anxious,

intense, volatile, visceral

Table 1. MIREX mood tags
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Mood Estimation

Stating the problem

Mood ?
Emotion felt by a listener when exposed to a music

m Discrete set of moods: Multilabel classification / Clustering
m Continous Space: Regression

excited
slarmed asoused astonished
afraid
tense.
distressed ——y god
annoyed | happy
frustrated % pleased
g
‘ IALENCE satisfied
content
miserable serene
depressed ponioy
nd atease
woomy, - od relaxed
droopy
wied sheepy

Figure 1. Russell’s model with two dimensions B EDEEZEH



Mood Estimation

Problem

Can we infer the mood with audio alone ?

sub-tasks

m Happy/Sad classification
m Arousal/Valence regression

dataset

Million Song Dataset for tags + Deezer Audio + Lyrics

Set Happy/sad classification | Valence/arousal regression
Train 3838 12174
Test 1220 3831
Validation 1302 4240

= = -DEEZER



Mood Estimation

Multimodal Networks

Pooling
+

Pooling
activation o
activation
—* Prediction
i _—r
Pooling )
+ Pooling "
! activation o
i1 %21 a1 activation
1 II —]l =1 >
v | o ———— [ e E—— -

Fully
* "‘ Fully Connected
I I Connected
x14 x24 X34

R. Delbouys et al. Multimodal music mood detection based
on audio and lyrics. ISMIR 2018
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Mood Estimation

Results

happy/sad accuracy in % | valence MSE | arousal MSE
Audio 20.26 0.9141 0.6721
Lyrics 72.52 0.9700 08870
Late fusion 82,12 0.9009 0.6721

Mid-level fusion

82.15

Interesting findings

0.8701

0.6675

= Multimodal is better for Happy/Sad and Valence prediction

m Lyrics does not add much for arousal prediction

= = -DEEZER



Multi-modal learning

Other Modalities

m Images (album covers, artist profile pictures)
m Usage (Collab filtering)

m Other texts (album reviews)

m Context

...

= = -DEEZER



Music Embedding Spaces

Embeddings

Limits of the One-task one network approach

m Tedious to learn
m Long time lost in data preparation
m ad-hoc development
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Music Embedding Spaces

Embeddings

Limits of the One-task one network approach

m Tedious to learn
m Long time lost in data preparation
m ad-hoc development

Embeddings

= Assign to each item x a continuous f(x) in RY

m Core idea: ||f(x7) — f(x2)| encode the similarity between x;
and x,

m Use it to bootstrap classification/regression tasks
m Enables ranking and clustering tasks DEEZER



Representation Learning

Continuous space description of musical items

@ @& e
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Representation Learning

two approaches

Intermediate layers of a trained neural net

=

S %% = %__, 0

a1 LRRRRRL

Metric Learning

Explicitely learn the mapping f, usually by optimizing a triplet
loss function

L0 xtx7) = |[F(x) — FN)Z = () = Fx)IE + e +

= = -DEEZER



Music Representations: two examples

m Genre Representation (R. Hennequin et al, ISMIR 2018)
m Artist Disambiguations (J. Royo-Letelier et al, ISMIR 2018)
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Genre Ambiguities
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Genre Representations

Many Different Genre taxonomy/ontology exists
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Genre Representations

Many Different Genre taxonomy/ontology exists
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genres . T 177
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Genre representation

Issues

unsatisfactory genre representations

m Definition of tags: explicit ? variations of
meaning/distribution between dataset.

m Duplication issues: Bossa Nova / Bossanova.

m Polysemy: hardcore may refer to hardcore punk or
hardcore electronic.

Tasks

m Taxonomy Inference
m Tag System Translation

= = -DEEZER



Building a Genre representation

m Top-down approach: Map tags to an expert ontology (e.g.
dbpedia) using string matching.

m Use the tags distribution to infer relations between tags
(based on the distributional hypothesis)

Limitations

= Meaning of tags may not be explicit in a tag set.

m The ontology has to identify every possible name for a
concept.

m Polysemy is difficult to deal with.

= Needs overlap between dataset for inferring relations

between tags of different tag systems.
DEEZER



Building a Genre Representation from audio

Idea

—

. B =
h ['_J=\'_L . J»I.J_L=‘:| = “%E_—p f(x)
s i i

=

m Use a classification system (based on a CNN).

= Build a vector representation such that the distance in the
representation space is linked to the confusion of the
classifier.

= = -DEEZER



Genre representation

Taxonomy inference

Task: Given a sub-Genre (e.qg. indie rock), retrieve its associated

main genre (e.g. rock)

O -@
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folk, world, & country
hip hop
non-music

jazz

brass & military
blues

stage & screen
funk / soul

pop

reggae
electronic

rock

latin

classical

t-SNE of audio-based genre representation
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Tag System Translation

Genre representation

Audio-based translation f.

Cooccurrence-based translation fj;q

Mumu tag Discogs tag Mumu tag Discogs tag
bebop bop irish folk celtic

movie scores score contemporary big band big band

indie & lo-fi lo-fi latin music genre:latin
electric blues modern elec. blues rap & hip-hop genre:hip hop
electronica leftfield vocal blues ragtime
punk-pop pop punk dance & electronic genre:electronic
modern postbebop genre:jazz today’s country country

special interest avantgarde electric blues genre:blues
singer-songwriters folk rock children’s music genre:children’s
r&b rnb/swing comedy & spoken word comedy

Embedding space seem to capture a notion of "genre"
similarities that is detached from the labels.
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Artist Disambiguation with Metric Learning

No universal Identifier for Artists
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Artist Disambiguation with Metric Learning

No universal Identifier for Artists

Disambiguate using the audio

Sample excerpts from discographies and try to cluster them in
an embedding space. DEEZER



Artist Disambiguation from audio

Push-Pull Loss function

L0 xtx7) = |[F(x) = FxD)Z = IF(x) = Fx)IE +af +

Avoid collapsing:
IFOOI =1

Sampling triplets

.
L o
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Artist Disambiguation

Clusters

b A

L

[
*.,

¥
—
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f"-lr'!:&c-'-' .
I 4%“

(a) “Ace” (b) “Scarecrow” (c) “Do or Die”

In a nutshell

m Generalizes to artists not seen during the training
m Best used in conjunction with metadata
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Outline

Frontiers and Open Challenges
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MIR at the age of Deep Learning

Tasks that have greatly improved

m Instrument and Chords Detection
m Genre classification

= Mood estimation

m Source separation

Tasks not so much impacted

m Lyrics Transcription
m Structure Analysis

m Cover and version ldentification
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Next Frontiers in MIR

m Understanding impact of cultural bias on musical concepts

m Understanding the impact of listening context on
perception of musical information

m Captioning of music

Music notions are culturally and context dependent. Rock is not
the same for a 14 year old brazilian girl and a 50 y.o. male from
tenessee.
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The Andre Rieu’s effect

Music notions are heavily culturally and context dependent

Classical music ?
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Open challenges

Study links between user behavior, external context and
musical information concepts

Research directions

m Audio Signal for cold start recommendation
m Embedding space alignment and projections
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Open challenges

Study links between user behavior, external context and
musical information concepts

Research directions

m Audio Signal for cold start recommendation
= Embedding space alignment and projections

= ANR DICTAPHONE: measuring gap between discourse and
practice of music consumption

m ANR SATIE: measuring "musical satisfaction"

m EU Project MIP-Frontiers: PhD on "Behavioural music data
analytics"
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Our latest papers

R. Hennequin, J. Royo-Letelier, M. Moussallam Codec
Independent Lossy Audio Compression Detection. ICASSP
2017

J. Royo-Letelier, R. Hennequin, M. Moussallam Metric
learning for music artist disambiguation from audio. ISMIR
2018

R. Delbouys, R. Hennequin, J. Royo-Letelier, F.Piccoli, M.
Moussallam Towards end-to-end multimodal music mood
detection based on audio and lyrics. ISMIR 2018

R. Hennequin, J. Royo-Letelier, M. Moussallam Audio Based
Disambiguation Of Music Genre Tags. ISMIR 2018
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Contact and question

Jobs
deezerjobs.com

Contact

research@deezer.com, mmoussallam@deezer.com
Twitter: @MMoussallam

Stay tuned

deezer.io
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