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Statistical Analysis of the Scoliotic Spine

Data

 307 Scoliotic patients from the Montreal’s St-Justine Hosp

 3D Geometry from multi-planar X-rays

 Articulated model:17 relative pose of successive vertebras

Statistics 

 Main translation variability is axial (growth?)

 Main rot. var. around anterior-posterior axis 

 4 first variation modes related to King’s classes

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]



Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]

 Observation = “random” deformation of a reference template 

 Deterministic template = anatomical invariants [Atlas ~ mean]

 Random deformations = geometrical variability [Covariance matrix]
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Natural Riemannian Metrics on Transformations

Transformation are Lie groups: Smooth manifold G compatible with 

group structure

 Composition g o h and inversion g-1 are smooth

 Left and Right translation Lg(f) = g ○ f    Rg (f) = f ○ g

 Conjugation   Conjg(f) = g ○ f ○ g-1

Natural Riemannian metric choices

 Chose a metric at Id: <x,y>Id

 Propagate at each point g using left (or right) translation

<x,y>g = < DLg
(-1) .x , DLg

(-1) .y >Id

Implementation 

 Practical computations using left (or right) translations
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General Non-Compact and Non-Commutative case

No Bi-invariant  Mean for 2D Rigid Body Transformations

 Metric at Identity: 𝑑𝑖𝑠𝑡(𝐼𝑑, 𝜃; 𝑡1; 𝑡2 )2 = 𝜃2 + 𝑡1
2+ 𝑡2

2

 𝑇1 =
𝜋

4
; −

2

2
;

2

2
𝑇2 = 0; 2; 0 𝑇3= −

𝜋

4
; −

2

2
; −

2

2

 Left-invariant Fréchet mean: 0; 0; 0

 Right-invariant Fréchet mean: 0;
2

3
; 0 ≃ (0; 0.4714; 0)

Questions for this talk:

 Can we design a mean compatible with the group operations?

 Is there a more convenient structure for statistics on Lie groups?
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Existence of bi-invariant (pseudo) metrics

[Miolane, Pennec, Computing Bi-Invariant Pseudo-Metrics on Lie Groups for 

Consistent Statistics. Entropy, 17(4):1850-1881, April 2015.]

 Algorithm: decompose the Lie algebra and find a bi-inv. pseudo-metric

 Test on rigid transformations SE(n): bi-inv. ps-metric for n=1 or 3 only
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Basics of Lie groups

Flow of a left invariant vector field ෨𝑋 = 𝐷𝐿. 𝑥 from identity

 𝛾𝑥 𝑡 exists for all time

 One parameter subgroup: 𝛾𝑥 𝑠 + 𝑡 = 𝛾𝑥 𝑠 . 𝛾𝑥 𝑡

Lie group exponential

 Definition: 𝑥 ∈ 𝔤 𝐸𝑥𝑝 𝑥 = 𝛾𝑥 1 𝜖 𝐺

 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim)

3 curves parameterized by the same tangent vector

 Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?
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Affine connection spaces:

Drop the metric, use connection to define geodesics

Affine Connection (infinitesimal parallel transport)

 Acceleration = derivative of the tangent vector along a curve

 Projection of a tangent space on 

a neighboring tangent space

Geodesics = straight lines

 Null acceleration: 𝛻 ሶ𝛾 ሶ𝛾 = 0

 2nd order differential equation:

Normal coordinate system

 Local exp and log maps
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 

Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Canonical Affine Connections on Lie Groups

A unique Cartan-Schouten connection

 Bi-invariant and symmetric (no torsion) 

 Geodesics through Id are one-parameter subgroups (group 

exponential)

 Matrices : M(t) = A exp(t.V)

 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)

 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝝍 𝝓 = 𝝍𝝓−𝟏𝝍
 Matrix geodesic symmetry: 𝑆𝐴 𝑀 𝑡 = 𝐴 exp −𝑡𝑉 𝐴−1𝐴 = 𝑀(−𝑡)
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 

Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]
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Mean value on an affine connection space

Fréchet / Karcher means not usable (no distance) but:

Exponential barycenters
 [Emery & Mokobodzki 91, Corcuera & Kendall 99]

׬ 𝐿𝑜𝑔𝑥 𝑦 𝜇(𝑑𝑦) = 0 or    σ𝑖 𝐿𝑜𝑔𝑥 𝑦𝑖 = 0

 Existence? Uniqueness? 

 OK for convex affine manifolds with semi-local convex geometry 

[Arnaudon & Li, Ann. Prob. 33-4, 2005]

 Use a separating function (convex function separating points)  instead of a distance

 Algorithm to compute the mean: fixed point iteration (stability?)
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Bi-invariant Mean on Lie Groups

Exponential barycenter of the symmetric Cartan connection

 Locus of points where σ𝐿𝑜𝑔 𝑚−1. 𝑔𝑖 = 0 (whenever defined)

 Iterative algorithm: 𝑚𝑡+1 = 𝑚𝑡 ∘ 𝐸𝑥𝑝
1

𝑛
σ𝐿𝑜𝑔 𝑚𝑡

−1. 𝑔𝑖

 First step corresponds to the Log-Euclidean mean

 Corresponds to the first definition of bi-invariant mean of [V. Arsigny, X. Pennec, 

and N. Ayache. Research Report RR-5885, INRIA, April 2006.]

Mean is stable by left / right composition and inversion 

 If 𝑚 is a mean of 𝑔𝑖 and ℎ is any group element, then 

 ℎ ∘ 𝑚 is a mean of ℎ ∘ 𝑔𝑖 , 

 𝑚 ∘ ℎ is a mean of the points 𝑔𝑖 ∘ ℎ

 and 𝑚(−1) is a mean of 𝑔
𝑖
(−1)
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[XP and V. Arsigny. Exponential Barycenters of the Canonical Cartan Connection and 

Invariant Means on Lie Groups. In Matrix Information Geometry. 2012 ]



Bi-invariant Mean on Lie Groups

Fine existence

 If the data points belong to a sufficiently small normal convex 

neighborhood of some point, then there exists a unique solution 

in this NCN.

 Moreover, the iterated point strategy converges at least at a 

linear rate towards this unique solution, provided the initialization 

is close enough.

 Proof: using an auxiliary metric, the iteration is a contraction.

Closed-form for 2 points

 𝑚(𝑡) = 𝑥 ∘ 𝐸𝑥𝑝 (𝑡. 𝐿𝑜𝑔 𝑥 −1 ∘ 𝑦 )
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Special Matrix Groups

Scaling and translations ST(n)

 No bi-invariant metric 

 Group geodesics defined globally, all points are reachable

 Existence and uniqueness of bi-invariant mean (closed form)

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 17

Group / left-invariant / right-invariant geodesics



Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group)

 No bi-invariant metric 

 Group geodesics defined globally, all points are reachable

 Existence and uniqueness of bi-invariant mean (closed form resp. 

solvable) 

Rigid-body transformations 

 Logarithm well defined iff log of rotation part is well defined, 

i.e. if the 2D rotation have angles 𝜃𝑖 < 𝜋

 Existence and uniqueness with same criterion as for rotation parts 

(same as Riemannian)

SU(n) and GL(n): 

 log does not always exist (need 2 exp to cover)
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Example mean of 2D rigid-body transformation

𝑇1 =
𝜋

4
; −

2

2
;
2

2
𝑇2 = 0; 2; 0 𝑇3= −

𝜋

4
; −

2

2
;−

2

2

 Metric at Identity: 𝑑𝑖𝑠𝑡(𝐼𝑑, 𝜃; 𝑡1; 𝑡2 )2 = 𝜃2 + 𝑡1
2+ 𝑡2

2

 Left-invariant Fréchet mean: 0; 0; 0

 Log-Euclidean mean: 0;
2−𝜋/4

3
; 0 ≃ (0; 0.2096; 0)

 Bi-invariant mean: 0;
2−𝜋/4

1+𝜋/4( 2+1)
; 0 ≃ (0; 0.2171; 0)

 Right-invariant Fréchet mean: 0;
2

3
; 0 ≃ (0; 0.4714; 0)
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Generalization of the Statistical Framework

Covariance matrix & higher order moments

 Defined as tensors in tangent space

Σ = 𝐿𝑜𝑔𝑥׬ 𝑦 ⊗ 𝐿𝑜𝑔𝑥 𝑦 𝜇(𝑑𝑦)

 Matrix expression changes

according to the basis

Other statistical tools

 Mahalanobis distance well defined and bi-invariant

𝜇 𝑚,Σ (𝑔) = න 𝐿𝑜𝑔𝑚 𝑔 𝑖Σ𝑖𝑗
(−1)

𝐿𝑜𝑔𝑚 𝑔 𝑗𝜇(𝑑𝑦)

 Tangent Principal Component Analysis (t-PCA)

 Principal Geodesic Analysis (PGA), provided a data likelihood

 Independent Component Analysis (ICA)
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Cartan Connections vs Riemannian

What is similar
 Standard differentiable geometric structure [curved space without torsion] 

 Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework

 No metric (but no choice of metric to justify)

 The exponential does always not cover the full group

 Pathological examples close to identity in finite dimension

 In practice, similar limitations for the discrete Riemannian framework 

 Global existence and uniqueness of bi-invariant mean? 

Use a bi-invariant pseudo-Riemannian metric? [Miolane MaxEnt 2014]

What we gain

 A globally invariant structure invariant by composition & inversion 

 Simple geodesics, efficient computations (stationarity, group exponential)

 The simplest linearization of transformations for statistics? 
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Riemannian Metrics on diffeomorphisms

Space of deformations

 Transformation y= (x)

 Curves in transformation spaces:  (x,t)

 Tangent vector = speed vector field 

Right invariant metric 

 Eulerian scheme 

 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 

Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009]

Geodesics determined by optimization of a time-varying vector field

 Distance

 Geodesics characterized by initial velocity / momentum

 Optimization for images is quite tricky (and lenghty)

dt

txd
xvt

),(
)(




Id
ttt vv

t

1
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


)(minarg),(

1

0

2

10

2 dtvd
tt

t
v 



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Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]

 Exponential of a smooth vector field is a diffeomorphism

 Parameterize deformation by time-varying Stationary Velocity Fields

Direct generalization of numerical matrix algorithms
 Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006]

recursive use of exp(v)=exp(v/2) o exp(v/2)

 Computing the Jacobian :Dexp(v) = Dexp(v/2) o exp(v/2) . Dexp(v/2)

 Updating the deformation parameters:  BCH formula [Bossa MICCAI 2007]

exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )

 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019

•exp

Stationary velocity field Diffeomorphism



Optimize LCC with deformation parameterized by SVF

- 25X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019

Measuring Temporal Evolution with deformations

𝝋𝒕 𝒙 = 𝒆𝒙𝒑(𝒕. 𝒗 𝒙 )

https://team.inria.fr/asclepios/software/lcclogdemons/

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]



The Stationnary Velocity Fields (SVF)

framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple

 Compatible with “inverse-consistency”

 Vector statistics directly generalized to diffeomorphisms.

Registration algorithms using log-demons:

 Log-demons: Open-source ITK implementation (Vercauteren MICCAI 2008)

http://hdl.handle.net/10380/3060 

[MICCAI Young Scientist Impact award 2013]

 Tensor (DTI) Log-demons (Sweet WBIR 2010): 

https://gforge.inria.fr/projects/ttk 

 LCC log-demons for AD (Lorenzi, Neuroimage. 2013)

https://team.inria.fr/asclepios/software/lcclogdemons/

 3D myocardium strain / incompressible deformations (Mansi MICCAI’10)

 Hierarchichal multiscale polyaffine log-demons (Seiler, Media 2012)

http://www.stanford.edu/~cseiler/software.html

[MICCAI 2011 Young Scientist award]
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A powerful framework for statistics 

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

 One affine transformation per region (polyaffines transformations)

 Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

X. Pennec – Ecole d’été de Peyresq, Jul 1-5 2019 27
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A powerful framework for statistics 

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

 One affine transformation per region (polyaffines transformations)

 Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

 Group analysis using tensor reduction : reduced model 

8 temporal modes x 3 spatial modes = 24 parameters (instead of 204)
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Hierarchical Deformation model

Varying deformation atoms for each subject

M3 M4 M5 M6

M1 M2

M0

K

M3 M4 M5 M6

M1 M2

M0

1

…

Subject level:

29

Spatial structure of the anatomy common 

to all subjects
w0

w1 w2

w3 w4 w5 w6

Population level:

Aff(3) valued trees
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[Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]

Hierarchical Estimation of the Variability
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[Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]
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Hierarchical Estimation of the Variability

47 subjects



References for Statistics on Manifolds and Lie Groups
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Cartan connexion for diffeomorphisms: 
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