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Decision-theoretic framework

» Bayesian decision theory (BDT) in a nutshell
» a mathematical framework for decisions under uncertainty
P uncertainty is captured by probability distributions
» the “Bayesian agent” aims at minimizing the expected loss




Decision-theoretic framework (cont’d)

> How does this relate to optimization 7

(In a general BDT problem, the Bayesian agent itself can also have a state, that changes as a consequence of the
decisions; think, e.g., of a robot planning problem: the state could be the position & energy status of the robot.)
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Decision-theoretic framework (cont'd)

» How does this relate to optimization ?

> The agent is the optimization algorithm (or you, if you will)

(In a general BDT problem, the Bayesian agent itself can also have a state, that changes as a consequence of the

decisions; think, e.g., of a robot planning problem: the state could be the position & energy status of the robot.)

=

DA™ 34/74



Important example: single-objective optimization

» Consider the following setting
» a deterministic numerical model with scalar output:
f:X—=>R
x = f(x)

> “known” input space X C RY; e.g., X = [0; 1]¢
» f assumed expensive to evaluate; gradienﬁot available

» Optimization problem: find
» m* = minx f
» and/or x* = argminy f

(Until further notice, we will use this simple—but important—setting to
present the basics of Bayesian optimization.)



Important example: single-objective optimization (cont'd)

» States of nature:

a_ Rr¥ - im Joectiows i.,;c-’nzzj
o L C(%;R)

» Prior distribution:

Po= GP (= E)
§ Gt (mo ) TO) dB b
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Important example: single-objective optimization (cont'd)

» Intermediate decisions:

@ Y‘/ . ><N . evalnabou \m‘w‘:\ ex

(agt. : bedches )

» Transitions of the “state” of the Bayesian agent:

B Py n o B Py o
?,.A= s (' )-‘Fo—u_)

Notation: F, = (X1, £(X1), ..., Xn, &(Xn)).
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Important example: single-objective optimization (cont'd)

» Stopping decision: when to stop sampling

N = Nbulgd‘ Cwacu'.bu' 'dul‘.a})

» Terminal decision: c'est votre dernier mot? (. p. Foucaulr)

~ ~ o
Dny1 = X s ehwak Oj e wnwaivnn'2eq
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Important example: single-objective optimization (cont'd)

P Loss: the opportunity cost (aka linear loss, L1 loss, simple regret. )
d = 3 Gx
L) = J6) -wi} < [JR1-wid]

» A more “conservative” loss:

d= (%, =)

8w w J (8=
L[4 - J

4 ® yragv

(If instead of point estimates we choose to provide probalistic estimates in the form of predictive density functions,
then we can also consider the negative log loss, which leads to entropy-based methods.)



More decisions?

» Intermediate decisions: various extensions

» parallel computing: batches of input values

» multi-fidelity: choosing the right fidelity level

» tunable run-time: choosing when to stop a computation
> ..

» Stopping decision: optimal stopping?
> stopping based on some target accuracy on x* and/or m*

P trade-off between observation cost and accuracy
> ...

» Final decision: other settings

> multi-objective: Pareto set / Pareto front,

> quasi-optimal region (sublevel set)
> ..



Bayesian optimization

From Bayes-optimal to myopic strategies



Sequence of decision rules

> We are looking for a sequence of decision rules

» a.k.a. policy, or strategy
» Notation:

Q(f):(Xl(f)v R XN(f)a DN+1(f))7 f e

—_—

» We cannot use information that is not yet available
> X,(f) depends on f through F,_1 only (Vn < N)
» Dpy1(f) depends on f through Fy only

» Loss = terminal cost: L(x&,g) = L(&, dn1)
» where d = (Xl, ceey XN, dN+1) eX"x D



The Bayesian way

» Bayes-optimal strategy (optimization algorithm):

QBayes - argminQ EQ(L(é, DN—I—I))

= argminQ/QL(f, DN+1(f))Pg)]

where D ranges over all strategies D = (Xi,..., Xy, Dy+1)

> Problem'findD@

Can we actually build an optimal Bayesian algorithm?




Optimal terminal decision

» Define the posterior risk at time N for the decision dp1:

Rn(dn+1) = E(L(, M) | Fi)

Jomnte
(“risk” is a synonym for “expected loss") / 4:,:.&:'&
> Then... &, (L(‘E,’DM.)) - e,(eo (L(s,a,h)la-‘..)>
& (R.. (dur))

o [T )




Example (cont'd): the modified linear loss

Consider the case where dy41 = (X, m) and

m—minf if(f(x)=m <
L(f,dny1) = -

400 otherwise. <

Assume a non-degenerate GP model: & | Fy ~ GP(En, ky) with
kN(X,X) =0 iff xe& {Xl, 500 ,XN}

- = E(was |3'») if SH) == Bups

Then. .. R, (d.m) = o Hanwrite

4o

- fon 36) \
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Example (cont'd): the modified linear loss

Assume that n = N =5 (a small budget indeed).

oe °

response z

0 2 4 6 8 10 12
input x
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Example (cont'd): the modified linear loss

Assume that n = N =5 (a small budget indeed).

response z

blue dashed line: X = argmini<,?é(,3

— -

black dashed line: X = argminxexi Y (X;) —



Optimal choice of the last evaluation point
> Bayes risk at time N:

Ry = min Rn(dni1) = Rn(Dyy1)

—3 dN+1€

——=> » Posterior risk at time N — 1:

RN,1(>:,>,) = Eo (L(&, 57$1) | Fn-1, Xn = xn)
= Eo (Rz l 3‘,,_., X.,_— 9\'.;)

w» & (L(ro8) =& (R, (1)

Kf\‘, — “%w'"a,, eX R., (,\.D

» Remark: Rp_1 is used as a “sampling criterion”

(a.k.a. “infill criterion”, a.k.a. “merit function”...)

» Then




Example (cont'd): the modified linear loss

» Set M, = min,-S,, f(X,), n<N.

» Recall: Ry = My —E(min& | Fn) 7/
L e ————

> Then

Eo (MU - g(m.§ l 5-.1) i_,} )(M ._.,(N‘B
E (n"' ’3:'-', Xue ~) + coud
Xy = anguing o G (w‘.‘ (M,,_."f(xw,) | 5. )

”3“”‘9:.. e Eo ( ("1\;: - "S\(_'y))‘,. ‘ 32.-)

Rn—1(xn) =

)

» This is the Expected Improvement (El) criterion
(Mockus et al 1978; Jones, Schonlau & Wlech, 1998)

(computable analytically for GP priors = very commonly used)



One-dimensional illustration

«40)>» «F)» « =)
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https://github.com/stk-kriging/stk

Back to the Bayes-optimal strategy

» Notation: Epx = Eo (- | Fn, Xnt1 = x).

» Backward induction (or dynamic programming):

X{ = argmin, Eq x, (minx2 Ei ( ..
miny, En—1,, (Ming En (L(€, d))
7 uN(é_:d o (LE D))
~



Back to the Bayes-optimal strategy

» Notation: Epx = Eo (- | Fn, Xnt1 = x).

» Backward induction (or dynamic programming):

" . .
Xi = argmin, Eg (mlnx2 E1x ( ..

Miny, E/\@XN (mind En (L(&, d)))))

=

» Very difficult to use in practice beyond N =1 or 2
» each “min" is an optim. problem that needs to be solved. ..
» each “E, " is an integral that needs to be computed. ..
> none of them are tractable, even for the nicest (GP) priors &®



Practical Bayesian optimization: myopic strategies

» Practical BO algorithms use, in general, myopic strategies
P> a.k.a. one-step look-ahead strategies
» principle: make each decision as if it were the last one
» Bayes-optimal if N = 1, sub-optimal otherwise
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Practical Bayesian optimization: myopic strategies

» Practical BO algorithms use, in general, myopic strategies
P> a.k.a. one-step look-ahead strategies

» principle: make each decision as if it were the last one
» Bayes-optimal if N = 1, sub-optimal otherwise

» For any n < N, let L, = miny E, (L(d))
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One-dimensional illustration (cont'd)
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https://github.com/stk-kriging/stk

Practical Bayesian optimization: GP parameters

» Reminder: GP models have parameters

» variance, range, etc.

» “enough data” is needed to estimate them before the prior can
usefully guide the sequential design

» (alt.: introduce a prior distribution on the hyper-parameters)
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» Reminder: GP models have parameters
» variance, range, etc.
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> (alt.: introduce a prior distribution on the hyper-parameters)
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Two-dimensional illustration

upplementary material”.)

(This demo is not currently available in STK, the script will be provided directly to the participants as
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https://github.com/stk-kriging/stk

Practical Bayesian optimization: optimization

» Each iteration involves an auxiliary optimization problem
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Practical Bayesian optimization: optimization

» Each iteration involves an auxiliary optimization problem

» Various approaches to solve it
» Fix grid or IID random search

> OK for low-dimensional, simple problems
> if accurate convergence is not needed

» External solvers

> ex: DiceOptim — Rgenoud (genetic + gradient)
> ex: Janusvekis & Le Riche (2013) — CMA-ES

» Sequential Monte Carlo (Benassi, 2013; Feliot et al, 2017)

» sample according to a well-chosen sequence of densities

» Bayesian optimization = run-time overhead

» depends on the model, sampling criterion, optimizer, etc.
» BO is appropriate for expensive-to-evaluate numerical models
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