
Introduction to Bayesian Optimization

—
and more generally to the Design

& Analysis of Computer Experiments (DACE)
—

Julien Bect

Université Paris-Saclay, CNRS, CentraleSupélec

Laboratoire des Signaux et Systèmes (L2S), Gif-sur-Yvette, France

https://l2s.centralesupelec.fr/

GdR MASCOT-NUM, INSMI, CNRS

https://www.gdr-mascotnum.fr/

15th Peyresq Summer School

in Signal and Image Processing

Online, 2021, June 20–26

1/74

https://l2s.centralesupelec.fr/
https://www.gdr-mascotnum.fr/


2/74

Introduction

Computer experiments

Design of computer experiments

Gaussian process modeling

Basic principle

Practical GP modeling

Bayesian optimization

Decision-theoretic framework

From Bayes-optimal to myopic strategies

Extensions

References



29/74

Introduction

Computer experiments

Design of computer experiments

Gaussian process modeling

Basic principle

Practical GP modeling

Bayesian optimization

Decision-theoretic framework

From Bayes-optimal to myopic strategies

Extensions

References



30/74

Introduction

Computer experiments

Design of computer experiments

Gaussian process modeling

Basic principle

Practical GP modeling

Bayesian optimization

Decision-theoretic framework

From Bayes-optimal to myopic strategies

Extensions

References



31/74

What is Bayesian optimization ?

◮ “wide sense” definition

◮ optimization using tools from Bayesian UQ
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What is Bayesian optimization ?

◮ “wide sense” definition

◮ optimization using tools from Bayesian UQ

◮ started with Harold Kushner’s paper: A New Method of

Locating the Maximum Point of an Arbitrary Multipeak Curve

in the Presence of Noise, J. Basic Engineering, 1964.
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What is Bayesian optimization ?

◮ a slightly more restrictive definition

◮ sequential Bayesian decision theory applied to optimization

◮ started with the work of Jonas Mockus and Antanas Žilinskas

in the 70’s, e.g., On a Bayes method for seeking an extremum,

Avtomatika i Vychislitel’naya Teknika, 1972 (in Russian)

◮ In this lecture we adopt this second (more constructive !) definition
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Decision-theoretic framework
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Decision-theoretic framework

◮ Bayesian decision theory (BDT) in a nutshell
◮ a mathematical framework for decisions under uncertainty
◮ uncertainty is captured by probability distributions
◮ the “Bayesian agent” aims at minimizing the expected loss
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Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

(In a general BDT problem, the Bayesian agent itself can also have a state, that changes as a consequence of the

decisions; think, e.g., of a robot planning problem: the state could be the position & energy status of the robot.)
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Decision-theoretic framework (cont’d)

◮ How does this relate to optimization ?

◮ The agent is the optimization algorithm (or you, if you will)

Ingredients of a BDT problem

◮ a set Ω of all possible “states of nature”
◮ a prior distribution P0 over the states of nature
◮ a description of the decisions we have to make
◮ and the corresponding “transitions”
◮ a loss function L (or utility function U)

(In a general BDT problem, the Bayesian agent itself can also have a state, that changes as a consequence of the

decisions; think, e.g., of a robot planning problem: the state could be the position & energy status of the robot.)
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Important example: single-objective optimization

◮ Consider the following setting
◮ a deterministic numerical model with scalar output:

f : X → R

x 7→ f (x)

◮ “known” input space X ⊂ R
d ; e.g., X = [0; 1]d

◮ f assumed expensive to evaluate; gradient not available

◮ Optimization problem: find
◮ m∗ = minX f

◮ and/or x∗ = argminX f

(Until further notice, we will use this simple—but important—setting to

present the basics of Bayesian optimization.)
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Important example: single-objective optimization (cont’d)

◮ States of nature:

Ω =

◮ Prior distribution:

P0 =
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Important example: single-objective optimization (cont’d)

◮ Intermediate decisions:

◮ Transitions of the “state” of the Bayesian agent:

Notation: Fn = (X1, ξ(X1), . . . , Xn, ξ(Xn)).
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Important example: single-objective optimization (cont’d)

◮ Stopping decision: when to stop sampling

N =

◮ Terminal decision: c’est votre dernier mot? (J. P. Foucault)

DN+1 =
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Important example: single-objective optimization (cont’d)

◮ Loss: the opportunity cost (a.k.a linear loss, L1 loss, simple regret. . . )

◮ A more “conservative” loss:

(If instead of point estimates we choose to provide probalistic estimates in the form of predictive density functions,
then we can also consider the negative log loss, which leads to entropy-based methods.)
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More decisions?

◮ Intermediate decisions: various extensions
◮ parallel computing: batches of input values
◮ multi-fidelity: choosing the right fidelity level
◮ tunable run-time: choosing when to stop a computation
◮ . . .

◮ Stopping decision: optimal stopping?
◮ stopping based on some target accuracy on x∗ and/or m∗

◮ trade-off between observation cost and accuracy
◮ . . .

◮ Final decision: other settings
◮ multi-objective: Pareto set / Pareto front,
◮ quasi-optimal region (sublevel set)
◮ . . .



41/74

Introduction

Computer experiments

Design of computer experiments

Gaussian process modeling

Basic principle

Practical GP modeling

Bayesian optimization

Decision-theoretic framework

From Bayes-optimal to myopic strategies

Extensions

References



42/74

Sequence of decision rules

◮ We are looking for a sequence of decision rules
◮ a.k.a. policy, or strategy
◮ Notation:

D(f ) = (X1(f ), . . . , XN(f ), DN+1(f )) , f ∈ Ω.

◮ We cannot use information that is not yet available
◮ Xn(f ) depends on f through Fn−1 only (∀n ≤ N)
◮ DN+1(f ) depends on f through FN only

◮ Loss = terminal cost: L(ω, d) = L(ω, dN+1)
◮ where d = (x1, . . . , xN , dN+1) ∈ X

n × D
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The Bayesian way

◮ Bayes-optimal strategy (optimization algorithm):

DBayes = argminD E0 (L(ξ, DN+1))

= argminD

∫

Ω
L(f , DN+1(f )) P0(df )

where D ranges over all strategies D = (X1, . . . , XN , DN+1)

◮ Problem: find DBayes. . .

Can we actually build an optimal Bayesian algorithm?
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Optimal terminal decision

◮ Define the posterior risk at time N for the decision dN+1:

RN(dN+1) = E (L(ξ, dN+1) | FN)

(“risk” is a synonym for “expected loss”)

◮ Then. . .
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Example (cont’d): the modified linear loss

Consider the case where dN+1 = (x̂ , m̂) and

L(f , dN+1) =





m̂ − min f if f (x̂) = m̂

+∞ otherwise.

Assume a non-degenerate GP model: ξ | FN ∼ GP(ξ̂N , kN) with

kN(x , x) = 0 iff x ∈ {X1, . . . , XN}

Then. . .
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Example (cont’d): the modified linear loss

Assume that n = N = 5 (a small budget indeed).
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Example (cont’d): the modified linear loss

Assume that n = N = 5 (a small budget indeed).
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black dashed line: X̂ = argminx∈X X̂
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Optimal choice of the last evaluation point

◮ Bayes risk at time N:

R∗
N = min

dN+1∈D

RN(dN+1) = RN(D∗
N+1)

◮ Posterior risk at time N − 1:

RN−1(xN) = E0
(
L(ξ, D∗

N+1) | FN−1, XN = xN

)

=

◮ Then

X ∗
N =

◮ Remark: RN−1 is used as a “sampling criterion”
(a.k.a. “infill criterion”, a.k.a. “merit function”. . . )
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Example (cont’d): the modified linear loss

◮ Set Mn = mini≤n ξ(Xi), n ≤ N.

◮ Recall: R∗
N = MN − E (min ξ | FN)

◮ Then

RN−1(xN) =

X ∗
N =

◮ This is the Expected Improvement (EI) criterion

(Mockus et al 1978; Jones, Schonlau & Wlech, 1998)

(computable analytically for GP priors ⇒ very commonly used)
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One-dimensional illustration

STK demo (https://github.com/stk-kriging/stk)

stk_example_doe03

◮ One-dimensional illustration

◮ Expected Improvement (EI) criterion

◮ Ordinary kriging, Matérn-5/2 covariance function (known

parameters)

◮ For now we will only look at the final stage of this demo.

https://github.com/stk-kriging/stk
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Back to the Bayes-optimal strategy

◮ Notation: En,x = E0 ( · | Fn, Xn+1 = x).

◮ Backward induction (or dynamic programming):

X ∗
1 = argminx1

E0,x1

(
minx2 E1,x2

(
. . .

minxN
EN−1,xN

(
mind EN (L(ξ, d))

)))
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Back to the Bayes-optimal strategy

◮ Notation: En,x = E0 ( · | Fn, Xn+1 = x).

◮ Backward induction (or dynamic programming):

X ∗
1 = argminx1

E0,x1

(
minx2 E1,x2

(
. . .

minxN
EN−1,xN

(
mind EN (L(ξ, d))

)))

◮ Very difficult to use in practice beyond N = 1 or 2
◮ each “min” is an optim. problem that needs to be solved. . .
◮ each “En,x ” is an integral that needs to be computed. . .
◮ none of them are tractable, even for the nicest (GP) priors /
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Practical Bayesian optimization: myopic strategies

◮ Practical BO algorithms use, in general, myopic strategies
◮ a.k.a. one-step look-ahead strategies
◮ principle: make each decision as if it were the last one
◮ Bayes-optimal if N = 1, sub-optimal otherwise
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Practical Bayesian optimization: myopic strategies

◮ Practical BO algorithms use, in general, myopic strategies
◮ a.k.a. one-step look-ahead strategies
◮ principle: make each decision as if it were the last one
◮ Bayes-optimal if N = 1, sub-optimal otherwise

◮ For any n ≤ N, let Ln = mind En (L(d))

Generic myopic BO algorithm

◮ For n from 0 to N − 1
◮ Compute Xn+1 = argminx En,xn+1

(
Ln+1

)

◮ Make an evaluation at Xn+1

◮ Output DN+1 = argmin EN (L(d))
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One-dimensional illustration (cont’d)

STK demo (https://github.com/stk-kriging/stk)

stk_example_doe03

◮ One-dimensional illustration

◮ Expected Improvement (EI) criterion

◮ Ordinary kriging, Matérn-5/2 covariance function (known

parameters)

https://github.com/stk-kriging/stk
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Practical Bayesian optimization: GP parameters

◮ Reminder: GP models have parameters
◮ variance, range, etc.
◮ “enough data” is needed to estimate them before the prior can

usefully guide the sequential design
◮ (alt.: introduce a prior distribution on the hyper-parameters)
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Practical Bayesian optimization: GP parameters

◮ Reminder: GP models have parameters
◮ variance, range, etc.
◮ “enough data” is needed to estimate them before the prior can

usefully guide the sequential design
◮ (alt.: introduce a prior distribution on the hyper-parameters)

Generic myopic BO algorithm with hyper-parameter estimation

◮ Init: (space-filling) DoE of size n0 (rule of thumb: n0 = 10 d)
◮ For n from n0 to N − 1

◮ once in a while, Estimate hyper-parameters (plug-in/fully Bayes)

◮ Compute Xn+1 = argminx En,xn+1

(
Ln+1

)

◮ Make an evaluation at Xn+1

◮ Output DN+1 = argmin EN (L(d))
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Two-dimensional illustration

STK demo (https://github.com/stk-kriging/stk)

demo1_EI

◮ Two-dimensional illustration (Branin-Hoo)

◮ Expected Improvement (EI) criterion

◮ Ordinary kriging, Matérn-5/2 covariance function

◮ Parameters (variance, range) estimated by ReML

(This demo is not currently available in STK, the script will be provided directly to the participants as

“supplementary material”.)

https://github.com/stk-kriging/stk
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Practical Bayesian optimization: optimization

◮ Each iteration involves an auxiliary optimization problem

◮ Various approaches to solve it
◮ Fix grid or IID random search

◮ OK for low-dimensional, simple problems

◮ if accurate convergence is not needed

◮ External solvers
◮ ex: DiceOptim → Rgenoud (genetic + gradient)

◮ ex: Janusvekis & Le Riche (2013) → CMA-ES

◮ Sequential Monte Carlo (Benassi, 2013; Feliot et al, 2017)
◮ sample according to a well-chosen sequence of densities

◮ Bayesian optimization ⇒ run-time overhead
◮ depends on the model, sampling criterion, optimizer, etc.
◮ BO is appropriate for expensive-to-evaluate numerical models
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