Optimisation non-lisse, non-convexe, algorithmes du premier ordre et liens avec le deep learning via les stratégies d'unfolded et PnP

Nelly Pustelnik

Peyresq - June 23th - 29th 2024

Focus on the following issues

- Convergence of the iterates of first order schemes: convex and non-convex.
 - Banach-Picard
 - ullet lpha-averaged operators
 - KL-based convergence
 - Algorithms dealing with non-linearities
- 2. From variational approaches to deep learning
 - Unfolded schemes
 - Plug-and-play
- 3. Illustrations in the context of inverse problem.

Non-convexity: f or g non-convex

$$\underset{\mathbf{x}}{\operatorname{minimize}}\ \Psi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x})$$

• Non-convexity: bi-convex problem

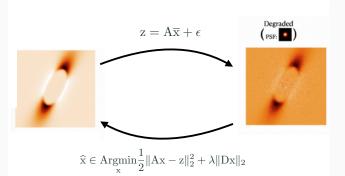
$$\underset{\mathbf{x},\mathbf{e}}{\text{minimize}} \ \Psi(\mathbf{x},\mathbf{e}) := f(\mathbf{x}) + g_1(\mathbf{x},\mathbf{e}) + g_2(\mathbf{e})$$

Non-convexity: non-linear operator

$$\underset{\mathbf{x}}{\text{minimize}} \ \Psi(\mathbf{x}) := f(\mathcal{A}(\mathbf{x})) + g(\mathbf{x})$$

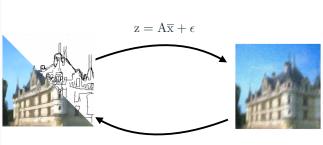
- ullet Signal/image processing: data $\mathbf{z} = \mathbf{A}\overline{\mathbf{x}} + \varepsilon$
- Standard data-fidelity term + prior formulation

$$\underset{\mathbf{x}}{\operatorname{minimize}}\ \Psi(\mathbf{x}) := f(\mathbf{x}; \mathbf{z}) + g(\mathbf{x})$$



- Signal/image processing: data $\mathbf{z} = A\overline{\mathbf{x}} + \varepsilon$
- Non-convex: bi-convex problem

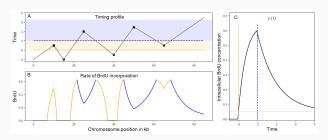
$$\underset{\mathbf{x},\mathbf{e}}{\text{minimize}}\ \Psi(\mathbf{x},\mathbf{e}) := f(\mathbf{x};\mathbf{z}) + g_1(\mathbf{x},\mathbf{e}) + g_2(\mathbf{e})$$



minimize
$$\|Ax - z\|^2 + \beta \|(1 - e) \odot Dx\|^2 + \lambda \|e\|_1$$

- Signal/image processing: data $\mathbf{z} = \mathcal{A}(\mathbf{x}) + \varepsilon$
- Non-convex:non-linear operator

$$egin{align*} \min _{\mathbf{x}} \mathrm{ize} \; \Psi(\mathbf{x}) := f(\mathcal{A}(\mathbf{x}); \mathbf{z}) + g(\mathbf{x}) \ \end{aligned}$$



[C. Lage, et al. Identifying a piecewise affine signal from its nonlinear observation - application to DNA replication analysis, 2024]

Nonsmooth convex optimization

Hilbert spaces

A (real) **Hilbert space** $\mathcal H$ is a complete real vector space endowed with an inner product $\langle\cdot\mid\cdot\rangle$. The associated norm is

$$(\forall \mathbf{x} \in \mathcal{H}) \qquad \|\mathbf{x}\| = \sqrt{\langle \mathbf{x} \mid \mathbf{x} \rangle}.$$

- ullet Particular case: $\mathcal{H}=\mathbb{R}^N$ (Euclidean space with dimension N).
- Course dedicated to finite dimension.

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

A linear operator $D \colon \mathcal{H} \to \mathcal{G}$ is bounded (or continuous) if

$$\|\mathbf{D}\| = \sup_{\|\mathbf{x}\|_{\mathcal{H}} \leqslant 1} \|\mathbf{D}\mathbf{x}\|_{\mathcal{G}} < +\infty$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

A linear operator $D \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$\|D\|=\sup_{\|\mathbf{x}\|\leqslant 1}\|D\mathbf{x}\|<+\infty$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

A linear operator $D \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$\|D\|=\sup_{\|\mathbf{x}\|\leqslant 1}\|D\mathbf{x}\|<+\infty$$

• In finite dimension, every linear operator is bounded.

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

A linear operator $D \colon \mathcal{H} \to \mathcal{G}$ is **bounded** (or continuous) if

$$\|\mathbf{D}\| = \sup_{\|\mathbf{x}\| \leqslant 1} \|\mathbf{D}\mathbf{x}\| < +\infty$$

In finite dimension, every linear operator is bounded.

 $\mathcal{B}(\mathcal{H},\mathcal{G})$: Banach space of bounded linear operators from \mathcal{H} to \mathcal{G} .

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

Let $D \in \mathcal{B}(\mathcal{H},\mathcal{G})$. Its **adjoint** D^* is the operator in $\mathcal{B}(\mathcal{G},\mathcal{H})$ defined as

$$(\forall (\textbf{x},\textbf{y}) \in \mathcal{H} \times \mathcal{G}) \qquad \langle \textbf{y} \mid \mathrm{D}\textbf{x} \rangle_{\mathcal{G}} = \langle \mathrm{D}^*\textbf{y} \mid \textbf{x} \rangle_{\mathcal{H}} \,.$$

Example:

$$\begin{array}{ll} \text{If} & \quad \mathbf{D}\colon \mathcal{H} \to \mathcal{H}^n\colon \mathbf{x} \mapsto (\mathbf{x},\dots,\mathbf{x}) \\ \\ \text{then} & \quad \mathbf{D}^*\colon \mathcal{H}^n \to \mathcal{H}\colon \mathbf{y} = (\mathbf{y}_1,\dots,\mathbf{y}_n) \mapsto \sum_{i=1}^n \mathbf{y}_i \end{array}$$

Proof:

$$\langle \operatorname{D} \mathbf{x} \mid \mathbf{y} \rangle = \langle (\mathbf{x}, \dots, \mathbf{x}) \mid (\mathbf{y}_1, \dots, \mathbf{y}_n) \rangle = \sum_{i=1}^n \langle \mathbf{x} \mid \mathbf{y}_i \rangle = \left\langle \mathbf{x} \mid \sum_{i=1}^n \mathbf{y}_i \right\rangle$$

Let ${\mathcal H}$ and ${\mathcal G}$ be two Hilbert spaces.

Let $D \in \mathcal{B}(\mathcal{H},\mathcal{G})$. Its **adjoint** D^* is the operator in $\mathcal{B}(\mathcal{G},\mathcal{H})$ defined as

$$(\forall (\textbf{x},\textbf{y}) \in \mathcal{H} \times \mathcal{G}) \qquad \langle \textbf{y} \mid \mathrm{D}\textbf{x} \rangle = \langle \mathrm{D}^*\textbf{y} \mid \textbf{x} \rangle \,.$$

Example:

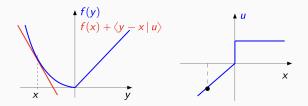
$$\begin{array}{ll} \text{If} & \quad \text{D: } \mathcal{H} \to \mathcal{H}^n \colon \mathbf{x} \mapsto (\mathbf{x}, \dots, \mathbf{x}) \\ \\ \text{then} & \quad \text{D}^* \colon \mathcal{H}^n \to \mathcal{H} \colon \mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_n) \mapsto \sum_{i=1}^n \mathbf{y}_i \end{array}$$

Proof:

$$\langle \operatorname{D} \mathbf{x} \mid \mathbf{y} \rangle = \langle (\mathbf{x}, \dots, \mathbf{x}) \mid (\mathbf{y}_1, \dots, \mathbf{y}_n) \rangle = \sum_{i=1}^n \langle \mathbf{x} \mid \mathbf{y}_i \rangle = \left\langle \mathbf{x} \mid \sum_{i=1}^n \mathbf{y}_i \right\rangle$$

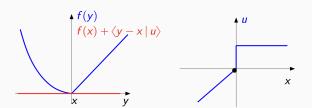
Let $\Psi:\mathcal{H}\to]-\infty,+\infty]$ be a proper function.

$$\begin{split} \partial \Psi : \mathcal{H} &\to 2^{\mathcal{H}} \\ \mathbf{x} &\to \left\{ \mathbf{u} \in \mathcal{H} \, | \, (\forall \mathbf{y} \in \mathcal{H}) \, \left\langle \mathbf{y} - \mathbf{x} | \mathbf{u} \right\rangle + \Psi(\mathbf{x}) \leqslant \Psi(\mathbf{y}) \right\} \end{split}$$



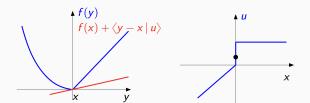
Let $\Psi: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\begin{split} \partial \Psi : \mathcal{H} &\to 2^{\mathcal{H}} \\ \mathbf{x} &\to \left\{ \mathbf{u} \in \mathcal{H} \, | \, (\forall \mathbf{y} \in \mathcal{H}) \, \left\langle \mathbf{y} - \mathbf{x} | \mathbf{u} \right\rangle + \Psi(\mathbf{x}) \leqslant \Psi(\mathbf{y}) \right\} \end{split}$$



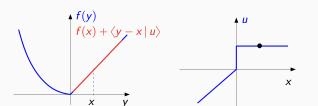
Let $\Psi: \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

$$\begin{split} \partial \Psi : \mathcal{H} &\to 2^{\mathcal{H}} \\ \mathbf{x} &\to \left\{ \mathbf{u} \in \mathcal{H} \, | \, (\forall \mathbf{y} \in \mathcal{H}) \, \left\langle \mathbf{y} - \mathbf{x} | \mathbf{u} \right\rangle + \Psi(\mathbf{x}) \leqslant \Psi(\mathbf{y}) \right\} \end{split}$$



Let $\Psi: \mathcal{H} \to [-\infty, +\infty]$ be a proper function.

$$\begin{split} \partial \Psi : \mathcal{H} &\to 2^{\mathcal{H}} \\ \mathbf{x} &\to \left\{ \mathbf{u} \in \mathcal{H} \, | \, (\forall \mathbf{y} \in \mathcal{H}) \, \left\langle \mathbf{y} - \mathbf{x} | \mathbf{u} \right\rangle + \Psi(\mathbf{x}) \leqslant \Psi(\mathbf{y}) \right\} \end{split}$$



Let $\Psi : \mathcal{H} \to]-\infty, +\infty]$ be a proper function. The (Moreau) subdifferential of Ψ , is such that

$$\begin{split} \partial \Psi : \mathcal{H} &\to 2^{\mathcal{H}} \\ \mathbf{x} &\to \left\{ \mathbf{u} \in \mathcal{H} \, | \, (\forall \mathbf{y} \in \mathcal{H}) \, \left\langle \mathbf{y} - \mathbf{x} | \mathbf{u} \right\rangle + \Psi(\mathbf{x}) \leqslant \Psi(\mathbf{y}) \right\} \end{split}$$

Let $\Psi: \mathcal{H} \to]-\infty, +\infty]$ be a proper function. The (Moreau) subdifferential of Ψ , is such that

$$\begin{split} \partial \Psi : \mathcal{H} &\to 2^{\mathcal{H}} \\ \mathbf{x} &\to \{ \mathbf{u} \in \mathcal{H} \, | \, (\forall \mathbf{y} \in \mathcal{H}) \, \, \langle \mathbf{y} - \mathbf{x} | \mathbf{u} \rangle + \Psi(\mathbf{x}) \leqslant \Psi(\mathbf{y}) \} \end{split}$$

Let \mathcal{H} be a Hilbert space. Let $\Phi \colon \mathcal{H} \to 2^{\mathcal{H}}$.

The set of zeros of Φ is : $\operatorname{zer}\Phi = \{ \mathbf{x} \in \mathcal{H} \, | \, 0 \in \Phi \mathbf{x} \}.$

Fermat's rule:

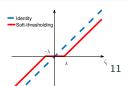
$$\begin{split} 0 \in \partial \Psi(\widehat{\mathbf{x}}) &\;\; \Leftrightarrow \;\; \widehat{\mathbf{x}} \in \mathsf{zer} \partial \Psi \qquad (\text{i.e. } \mathbf{\Phi} = \partial \Psi) \\ &\;\; \Leftrightarrow \;\; \widehat{\mathbf{x}} \in \mathsf{Argmin} \; \Psi(\mathbf{x}) \end{split}$$

Remark: If Ψ differentiable, $\partial \Psi = \{ \nabla \Psi \}$

<u>Definition</u> [Moreau,1965] Let $\Psi \colon \mathcal{H} \to]-\infty, +\infty]$ be a convex, l.s.c., and proper function. The proximity operator of Ψ at point $\mathbf{x} \in \mathcal{H}$ is the <u>unique point</u> denoted by $\mathrm{prox}_{\Psi} \, \mathbf{x}$ such that

$$(\forall \mathbf{x} \in \mathcal{H}) \qquad \operatorname{prox}_{\Psi} \mathbf{x} = \arg\min_{\mathbf{v} \in \mathcal{H}} \frac{1}{2} \|\mathbf{x} - \mathbf{v}\|^2 + \Psi(\mathbf{v})$$

- **→** Existing many closed form expressions
 - $\operatorname{prox}_{\lambda\|\cdot\|_1}$: soft-thresholding with a fixed threshold $\lambda > 0$.
 - exhaustive list: PROX Repository



Let \mathcal{H} be a Hilbert space and $\Psi \in \Gamma_0(\mathcal{H})$.

$$(\forall \mathbf{x} \in \mathcal{H}) \quad \mathbf{p} = \mathrm{prox}_{\Psi}(\mathbf{x}) \quad \Leftrightarrow \quad \mathbf{x} - \mathbf{p} \in \partial \Psi(\mathbf{p}).$$

Let \mathcal{H} be a Hilbert space and $\Psi \in \Gamma_0(\mathcal{H})$.

$$(\forall \mathbf{x} \in \mathcal{H}) \quad \mathbf{p} = \mathrm{prox}_{\Psi}(\mathbf{x}) \quad \Leftrightarrow \quad \mathbf{x} - \mathbf{p} \in \partial \Psi(\mathbf{p}).$$

• Proof:

$$\begin{split} \mathbf{p} &= \underset{\mathbf{y} \in \mathcal{H}}{\operatorname{arg\,min}} \ \Psi(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|^2 \\ \Leftrightarrow & \quad 0 \in \partial \Big(\Psi + \frac{1}{2} \| \cdot - \mathbf{x} \|^2 \Big) (\mathbf{p}) \\ \Leftrightarrow & \quad 0 \in \partial \Psi(\mathbf{p}) + \mathbf{p} - \mathbf{x} \end{split}$$

Let \mathcal{H} be a Hilbert space and $\Psi \in \Gamma_0(\mathcal{H})$.

$$(\forall \mathbf{x} \in \mathcal{H}) \quad \mathbf{p} = \mathrm{prox}_{\Psi}(\mathbf{x}) \quad \Leftrightarrow \quad \mathbf{x} - \mathbf{p} \in \partial \Psi(\mathbf{p}).$$

• Proof:

$$\begin{split} \mathbf{p} &= \underset{\mathbf{y} \in \mathcal{H}}{\operatorname{arg\,min}} \ \Psi(\mathbf{y}) + \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|^2 \\ \Leftrightarrow & \quad 0 \in \partial \Big(\Psi + \frac{1}{2} \| \cdot - \mathbf{x} \|^2 \Big) (\mathbf{p}) \\ \Leftrightarrow & \quad 0 \in \partial \Psi(\mathbf{p}) + \mathbf{p} - \mathbf{x} \end{split}$$

Gradient descent step:

$$\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \gamma \nabla \Psi(\mathbf{x}^{[k]})$$

(Explicit) sub-gradient descent step :

$$\mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \mathbf{u}^{[k]} \ \ \text{where} \ \ \mathbf{u}^{[k]} \in \gamma \partial \Psi(\mathbf{x}^{[k]})$$

(Implicit) sub-gradient descent step = Proximal step :

$$\begin{split} \mathbf{x}^{[k+1]} &= \mathbf{x}^{[k]} - \mathbf{u}^{[k]} \ \text{ where } \ \mathbf{u}^{[k]} \in \gamma \partial \Psi(\mathbf{x}^{[k+1]}) \\ &= \mathrm{prox}_{\Psi}(\mathbf{x}^{[k]}) \end{split}$$

Iterative scheme

→ Minimization problem :

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} \Psi(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x})$$

→ Design of a recursive sequence of the form

$$(\forall k \in \mathbb{N}) \qquad \mathbf{x}^{[k+1]} = \mathbf{\Phi} \mathbf{x}^{[k]},$$

Gradient descent $\Phi = \operatorname{Id} - \gamma(\nabla f + \nabla g)$ Proximal point algorithm $\Phi = \operatorname{prox}_{\gamma(f+g)}$

Forward-Backward $\Phi = \operatorname{prox}_{\gamma g}(\operatorname{Id} - \gamma \nabla f)$

Peaceman-Rachford $\mathbf{\Phi} = (2\operatorname{prox}_{\gamma g} - \operatorname{Id}) \circ (2\operatorname{prox}_{\gamma f} - \operatorname{Id})$

Douglas-Rachford $\Phi = \operatorname{prox}_{\gamma g}(2\operatorname{prox}_{\gamma f} - \operatorname{Id}) + \operatorname{Id} - \operatorname{prox}_{\gamma f}$

Fixed point algorithm: zeros and fixed points

```
Let \mathcal{H} be a Hilbert space. Let \Phi \colon \mathcal{H} \to 2^{\mathcal{H}}.
```

```
The set of zeros of \Phi is : \operatorname{zer}\Phi = \{\mathbf{x} \in \mathcal{H} \,|\, 0 \in \Phi\mathbf{x}\}.
```

The set of **fixed points** of Φ is : $Fix\Phi = \{x \in \mathcal{H} \mid x \in \Phi x\}.$

Banach-Picard theorem

An operator $\Phi \colon \mathcal{H} \to \mathcal{H}$ is ω -Lipschitz continuous for some $\omega \in [0, +\infty[$ if $(\forall \mathbf{x} \in \mathcal{H})(\forall \mathbf{y} \in \mathcal{H}) \quad \|\Phi \mathbf{x} - \Phi \mathbf{y}\| \leqslant \omega \|\mathbf{x} - \mathbf{y}\|.$

 Φ is nonexpansive if it is 1-Lipschitz continuous.

Banach-Picard theorem Let $\omega \in [0,1[$, let $\Phi \colon \mathcal{H} \to \mathcal{H}$ be a ω -Lipschitz continuous operator, and let $\mathbf{x}_0 \in \mathcal{H}$. Set

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{\Phi} \mathbf{x}^{[k]}.$$

Then, $\operatorname{Fix} \Phi = \{\widehat{\textbf{x}}\}$ for some $\widehat{\textbf{x}} \in \mathcal{H}$ and we have

$$(\forall k \in \mathbb{N}) \quad \|\mathbf{x}^{[k]} - \widehat{\mathbf{x}}\| \leqslant \omega^k \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|.$$

Moreover, $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges to $\hat{\mathbf{x}}$ with linear convergence rate ω .

Averaged nonexpansive operator

An operator $\Phi \colon \mathcal{H} \to \mathcal{H}$ is α -averaged nonexpansive for some $\alpha \in]0,1]$ if, for every $\mathbf{x} \in \mathcal{H}$ and $\mathbf{y} \in \mathcal{H}$,

$$\|\boldsymbol{\Phi}\mathbf{x} - \boldsymbol{\Phi}\mathbf{y}\|^2 \leqslant \|\mathbf{x} - \mathbf{y}\|^2 - \left(\frac{1-\alpha}{\alpha}\right)\|(\mathbf{I} - \boldsymbol{\Phi})\mathbf{x} - (\mathbf{I} - \boldsymbol{\Phi})\mathbf{y}\|^2,$$

 Φ is firmly nonexpansive if it is 1/2-averaged.

Theorem Let $\alpha \in]0,1[$, let $\Phi \colon \mathcal{H} \to \mathcal{H}$ be a $\alpha-$ averaged nonexpansive operator such that $\mathrm{Fix}\,\Phi \neq \varnothing$, and let $\mathbf{x}^{[0]} \in \mathcal{H}$. Set $(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \Phi \mathbf{x}^{[k]}.$

Then $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges weakly to a point in $\operatorname{Fix} \mathbf{\Phi}$.

Averaged operator: example

Let $\mathcal H$ be a Hilbert space, $\Gamma_0(\mathcal H)$ denotes the class of proper, lower semi-continuous, and convex functions from $\mathcal H$ to $]-\infty,+\infty].$

Gradient descent operator

 $\Psi \in \Gamma_0(\mathcal{H})$ with ν -Lipschitz gradient with $\nu > 0$. For some $\gamma > 0$, $\mathbf{I} - \gamma \nabla \Psi$ is a $\gamma \nu / 2$ -averaged operator.

Proximal operator

 $\Psi \in \Gamma_0(\mathcal{H}).$

For some $\gamma > 0$, $\operatorname{prox}_{\gamma \Psi}$ is a 1/2-averaged operator.

Composition of averaged operator

Theorem Let S be a nonempty subset of \mathcal{H} . Let $\alpha_1 \in]0,1[$ and $\alpha_2 \in]0,1[$. Let $\Phi_1:S \to S$ be α_1 -averaged and $\Phi_2:S \to S$ be α_2 -averaged.

Then $\mathbf{\Phi} = \mathbf{\Phi}_1 \mathbf{\Phi}_2$ is lpha-averaged with

$$\alpha = \frac{\alpha_1 + \alpha_2 - 2\alpha_1\alpha_2}{1 - \alpha_1\alpha_2} \in]0,1[.$$

Proof: Extracted from Theorem 26.14 [Bauschke-Combettes, 2017]

 $f\in \Gamma_0(\mathcal{H})$ with $\nu\text{-Lipschitz}$ gradient and $g\in \Gamma_0(\mathcal{H}).$ For some $\gamma>0$,

$$\mathbf{\Phi} := \mathrm{prox}_{\gamma g}(\mathbf{I} - \! \gamma \nabla f)$$

 $\bullet \ \ \text{Iterations:} (\forall k \in \mathbb{N}) \quad x^{[k+1]} = \operatorname{prox}_{\gamma g}(x^{[k]} - \gamma \nabla f(x^{[k]})).$

 $f\in\Gamma_0(\mathcal{H})$ with $\nu\text{-Lipschitz}$ gradient and $g\in\Gamma_0(\mathcal{H}).$ For some $\gamma>0$,

$$\mathbf{\Phi} := \mathrm{prox}_{\gamma g}(\mathbf{I} - \gamma \nabla f)$$

- Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\gamma g}(x^{[k]} \gamma \nabla f(x^{[k]}))$.
- Roots in projected gradient method [Levitin 1966] when $g = \iota_C$ for some closed convex set C.
- Also named Proximal Gradient (PG) algorithm or Iterative Soft Thresholding Algorithm (ISTA).

 $f\in \Gamma_0(\mathcal{H}) \text{ with } \nu\text{-Lipschitz gradient and } g\in \Gamma_0(\mathcal{H}).$ For some $\gamma>0$,

$$\mathbf{\Phi} := \mathrm{prox}_{\gamma q}(\mathbf{I} - \gamma \nabla f)$$

- Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\gamma q}(x^{[k]} \gamma \nabla f(x^{[k]}))$.
- $\operatorname{prox}_{\gamma_{\boldsymbol{q}}}(\mathbf{I} \gamma \nabla f)$ is α -averaged nonexpansive where

$$\alpha = \frac{\alpha_1 + \alpha_2 - 2\alpha_1\alpha_2}{1 - \alpha_1\alpha_2}.$$

where $\alpha_2 = \gamma \nu/2$ and $\alpha_1 = 1/2$ leading to

$$\alpha = \frac{1}{2 - \gamma \nu/2} \in]0, 1[.$$

Leading to

$$\gamma < 2/\nu$$
.

 $f\in \Gamma_0(\mathcal{H})$ with $\nu\text{-Lipschitz}$ gradient and $g\in \Gamma_0(\mathcal{H}).$ For some $\gamma>0$,

$$\mathbf{\Phi} := \mathrm{prox}_{\gamma g}(\mathbf{I} - \! \gamma \nabla f)$$

- Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\gamma g}(x^{[k]} \gamma \nabla f(x^{[k]}))$.
- $\operatorname{prox}_{\gamma q}(\mathbf{I} \gamma \nabla f)$ is α -averaged nonexpansive
- For every $\gamma > 0$, $\operatorname{zer} (\nabla f + \partial g) = \operatorname{Fix} \Phi$. Proof:

$$\begin{split} x \in \operatorname{Fix} \Phi &\Leftrightarrow x = \operatorname{prox}_{\gamma g}(x - \gamma \nabla f(x)) \\ &\Leftrightarrow x - \gamma \nabla f(x) - x \in \gamma \partial gx \\ &\Leftrightarrow 0 \in \nabla f(x) + \partial g(x) \\ &\Leftrightarrow x \in \operatorname{zer} (\nabla f + \partial g) \end{split}$$

 $f\in\Gamma_0(\mathcal{H})$ with $\nu\text{-Lipschitz}$ gradient and $g\in\Gamma_0(\mathcal{H}).$ For some $\gamma>0$,

$$\mathbf{\Phi} := \mathrm{prox}_{\gamma g}(\mathbf{I} - \! \gamma \nabla f)$$

- Iterations: $(\forall k \in \mathbb{N})$ $x^{[k+1]} = \text{prox}_{\gamma g}(x^{[k]} \gamma \nabla f(x^{[k]}))$.
- $\operatorname{prox}_{\gamma g}(\mathbf{I} \gamma \nabla f)$ is α -averaged nonexpansive
- For every $\gamma > 0$, $\operatorname{zer}(\nabla f + \partial g) = \operatorname{Fix} \Phi$.
- For every $\gamma \in \]0,2\nu^{-1}[$, the FBS method converges to a point in $zer(\nabla f + \partial g).$

f is ρ -strongly convex with $\rho > 0$ if $f - \frac{\rho}{2} \| \cdot \|_2^2$ is convex.

Properties:

• If f is ρ -strongly convex then

$$(\forall x, y \in \mathcal{H})$$
 $\langle \nabla f(x) - \nabla f(y) | x - y \rangle \ge \rho ||x - y||^2$

• If f is twice differentiable, then f is ρ -strongly convex if and only if all the eigenvalues of the Hessian matrix of f are at most equal to ρ .

Proposition [Briceno-Arias, Pustelnik, 2021]

 $f\in\Gamma_0(\mathcal{H})$ with u-Lipschitz gradient, ho-strongly convex for some $ho\in]0,
u[$, and $g\in\Gamma_0(\mathcal{H})$ with eta-Lipschitz gradient. Let $\gamma>0$. Then,

- 1. **FBS** Suppose that $\gamma \in]0, 2\nu^{-1}[$. Then
 - $\Phi = \mathrm{prox}_{\gamma g}(\mathbf{I} \! \gamma \nabla f)$ is $\omega(\gamma) \mathsf{Lipschitz}$ continuous, where

$$\omega(\gamma) := \max \left\{ |1 - \gamma \rho|, |1 - \gamma \nu| \right\} \in \left] 0, 1 \right[.$$

The minimum is achieved at

$$\gamma^* = rac{2}{
ho +
u} \quad ext{ and } \quad r_{T_1}(\gamma^*) = rac{
u -
ho}{
u +
ho}.$$

Proposition [Briceno-Arias, Pustelnik, 2021]

 $f\in\Gamma_0(\mathcal{H})$ with u-Lipschitz gradient, ho-strongly convex for some $ho\in]0,
u[$, and $g\in\Gamma_0(\mathcal{H})$ with eta-Lipschitz gradient. Let $\gamma>0$. Then,

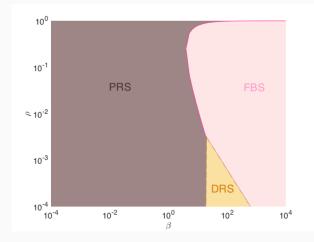
- 1. **FBS** Suppose that $\gamma \in]0, 2\beta^{-1}]$. Then
 - $\Phi = \mathrm{prox}_{\gamma f}(\mathbf{I} \! \gamma \nabla g)$ is $\omega(\gamma) \mathsf{Lipschitz}$ continuous, where

$$\omega(\gamma) := \frac{1}{1 + \gamma \rho} \in \left]0, 1\right[.$$

The minimum is achieved at

$$\gamma^* = 2\beta^{-1}$$
 and $r_{T_2}(\gamma^*) = \frac{1}{1 + 2\beta^{-1}\rho}$.

Regime diagram



Comparison of the convergence rates of Forward-Backward, Peaceman-Rachford, Douglas-Rachford for two choices of $\alpha=\nu_f^{-1}$, $\beta=\nu_g^{-1}$, and ρ .[Briceño-Arias, Pustelnik, 2021]

References nonsmooth convex optimization

- Combettes, P. L., Pesquet, J.-C., Proximal splitting methods in signal processing, Fixed-point algorithms for inverse problems in science and engineering, pp. 185â212, 2011.
- Pesquet, J.C., Pustelnik, N., Les nouvelles techniques d'optimisation : applications en signal, images et télécommunications, Peyresq 2013.
- Chambolle, A., Pock, T., An introduction to continuous optimization for imaging. Acta Numerica, 25, 161-319, 2016.
- Bauschke H., Combettes, P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2nd edition, 2017.
- Briceño-Arias, L. M., Pustelnik, N., Theoretical and numerical comparison of first-order algorithms for cocoercive equations and smooth convex optimization, Signal Processing, vol. 206, no. C, May 2023.

Conclusion nonsmooth convex optimization

- Convergence of the iterates important in signal/image processing.
- ullet Two types of convergence: lpha-averaged and Lipschitz continuity.
- With linear rate possibility to compare algorithms but one need to be sure that the bound is tight (cf. A. Taylor et al. work).
- Establish systematically diagram regimes when algorithms are compared to capture their regime of efficiency.

Nonsmooth nonconvex optimization: generalities

Let $\Psi: \mathbb{R}^N \to]-\infty, +\infty]$ be a proper function.

The (Fréchet) subdifferential of Ψ , denoted by $\partial \Psi$, is such that, for every $\mathbf{x} \in \operatorname{dom} \Psi$,

$$\partial \Psi(\mathbf{x}) = \left\{ \mathbf{u} \in \mathcal{H} \, | \, \liminf_{\substack{\mathbf{y} \to \mathbf{x} \\ \mathbf{y} \neq \mathbf{x}}} \frac{\Psi(\mathbf{y}) - \Psi(\mathbf{x}) - \langle \mathbf{y} - \mathbf{x} | \mathbf{u} \rangle}{\|\mathbf{x} - \mathbf{y}\|} \geqslant 0 \right\}$$

If $\mathbf{x} \notin \mathrm{dom}\,\Psi$, then $\partial \Psi(\mathbf{x}) = \varnothing$.

Remarks:

- If Ψ convex, Fréchet subdifferential matches Moreau subdifferential [Rockafellar, Wets, 1997].
- The set of critical points = zeros of ∂f .
- When $f \in \Gamma_0(\mathbb{R}^N)$, the critical points are the global minimizers.

•
$$\hat{\mathbf{x}} \in \operatorname{Argmin} \Psi(\mathbf{x}) \Rightarrow 0 \in \partial \Psi(\hat{\mathbf{x}})$$

Proximity operator

Proposition [Rockafellar, Wets, 1998] Let $\Psi \colon \mathbb{R}^N \to]-\infty, +\infty]$ be a l.s.c. and proper function. The proximity operator of Ψ at point $\mathbf{x} \in \mathbb{R}^N$ and for $\gamma > 0$ is

$$\left(\forall \mathbf{x} \in \mathbb{R}^{N}\right) \qquad \operatorname{prox}_{\gamma \Psi} \mathbf{x} = \arg \min_{\mathbf{v} \in \mathcal{H}} \frac{1}{2} \left\| \mathbf{x} - \mathbf{v} \right\|^{2} + \gamma \Psi(\mathbf{v})$$

Proposition (Well-definedness of proximal maps) [Bolte et al., 2014] Let $\Psi \colon \mathbb{R}^N \to]-\infty, +\infty]$ be a l.s.c. and proper function with $\inf \Psi > -\infty$. Then, for every $\gamma > 0$, $\operatorname{prox}_{\gamma\Psi} \mathbf{x}$ is nonempty and compact.

Proximity operator

Proposition [Gribonval, Nikolova, 2020] Let $S\subset \mathcal{H}$ be nonempty. A function $\varrho\colon S\to \mathcal{H}$ is a proximity operator of a function $\Psi\colon \mathcal{H}\to (-\infty,+\infty]$ if, and only if, there exists a convex l.s.c. function $\varphi\colon \mathcal{H}\to (-\infty,+\infty]$ such that for each $y\in S,\ \varrho(y)\in\partial\varphi(y).$

• If Ψ is continuous, there exists a convex differentiable function φ such that $\mathrm{prox}_{\Psi}(y) = \nabla \varphi(y)$.

Non-convex case: Lojasiewicz inequality

- Fundamental tool in non-convex optimization to demonstrate the convergence of sequences that are not necessarily convex.
- Inequality first proposed in [Lojasiewicz, 1963].
- Satisfied by any analytic real function.

Let $\Psi\colon\mathcal{H}\to\mathbb{R}$ be an analytic real function, and $\widehat{\mathbf{x}}$ a critical point of this function. There exist $\theta\in[1/2,1[$ and $\kappa\in]0,+\infty[$ such that Ψ satisfies Lojasiewicz's inequality in a neighborhood $N(\widehat{\mathbf{x}})$ of $\widehat{\mathbf{x}}$, i.e.,

$$(\forall \mathbf{x} \in N(\widehat{\mathbf{x}})) \quad |\Psi(\mathbf{x}) - \Psi(\widehat{\mathbf{x}})|^{\theta} \leqslant \kappa \|\nabla \Psi(\mathbf{x})\|$$

Non-convex case: Kurdyka-Lojasiewicz (KL) inequality

Let $\Psi\colon\mathcal{H}\to]-\infty,+\infty]$ be an analytic real function. Ψ satisfies the KL inequality if, for any $\xi\in\mathbb{R}$, and, for any bounded subset S of \mathcal{H} , there exist three constants $\kappa>0$, $\zeta>0$, and $\theta\in[0,1[$ such that

$$(\forall \mathbf{u} \in \partial \Psi(\mathbf{x})) \quad |\Psi(\mathbf{x}) - \xi|^{\theta} \leqslant \kappa \|\mathbf{u}\|$$

for every $\mathbf{x} \in S$ such that $|\Psi(\mathbf{x}) - \xi| \leqslant \zeta$.

- Generalization [Kurdyka, 1998] [Bolte et al., 2006 2007]
- As pointed out in [Attouch et al., 2010], the logarithm and exponential functions are neither real semi-algebraic nor real analytic, and they do not satisfy the inequality. However, there exists a function such that the KL inequality in its most general form is satisfied.

Converge proof receipe

- $\Psi: \mathcal{H} \to (-\infty, +\infty]$ be a proper l.s.c function bounded from below.
- Let Φ which generates a sequence $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ i.e. $\mathbf{x}^{[k+1]} = \Phi \mathbf{x}^{[k]}$.
 - 1. **sufficient decrease property**, which requires to find a positive constant ρ_1 such that, for any iteration k

$$\rho_1 \|\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}\|^2 \leqslant \Psi(\mathbf{x}^{[k]}) - \Psi(\mathbf{x}^{[k+1]})$$

2. subgradient lower bound for the iterates gap , which requires to find a positive constant ρ_2 such that

$$\|\mathbf{u}^{[k+1]}\|\leqslant \rho_2\|\mathbf{x}^{[k+1]}-\mathbf{x}^{[k]}\|\quad \text{with}\quad \mathbf{u}^{[k+1]}\in \partial \Psi(\mathbf{x}^{[k+1]})$$

- 3. Ψ constant on a subset of critical points, From (1)+(2) the set of all limit/accumulation points is a nonempty, compact and connected set. The objective function Ψ is finite and constant on the set of all limit points/subset of the critical points of Ψ .
- 4. **using the KL property** and show that the generated sequence $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ is a Cauchy sequence and hence is a convergent.

Nonsmooth nonconvex optimization: alternated schemes

Gauss-Seidel = coordinate descent

```
\begin{split} & \mathsf{Set} \ \mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}. \\ & \mathsf{For} \ k \in \mathbb{N} \\ & \mathbf{x}^{[k+1]} \in \mathrm{Arg} \min_{\mathbf{x}} \Psi(\mathbf{x}, \mathbf{e}^{[k]}) \\ & \mathbf{e}^{[k+1]} \in \mathrm{Arg} \min_{\mathbf{e}} \Psi(\mathbf{x}^{[k+1]}, \mathbf{e}) \end{split}
```

• Under technical assumptions, convergence of the sequence $(\mathbf{x}^{[k]}, \mathbf{e}^{[k]})_{k \in \mathbb{N}}$ to a critical point $(\widehat{\mathbf{x}}, \widehat{\mathbf{e}})$ of Ψ .

Technical assumptions = minimum is attained at each iteration, e.g. by assuming strict convexity w.r.t one argument. [Auslender1976, Bertsekas1999]

PAM = Proximal Alternating Minimization

$$\begin{split} & [\mathsf{Attouch} \ \mathsf{et} \ \mathsf{al} \ 2010] \\ & \mathsf{Set} \ \mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}. \\ & \mathsf{For} \ k \in \mathbb{N} \\ & \left[\begin{array}{c} c_k > 0, d_k > 0 \\ \mathbf{x}^{[k+1]} \in \mathrm{Arg} \min_{\mathbf{x}} \Psi(\mathbf{x}, \mathbf{e}^{[k]}) + \frac{c_k}{2} \|\mathbf{x} - \mathbf{x}^{[k]}\|^2 \\ \mathbf{e}^{[k+1]} \in \mathrm{Arg} \min_{\mathbf{e}} \Psi(\mathbf{x}^{[k+1]}, \mathbf{e}) + \frac{d_k}{2} \|\mathbf{e} - \mathbf{e}^{[k]}\|^2 \end{split} \end{split}$$

• Can be rewritten as

For
$$k \in \mathbb{N}$$

$$\mathbf{x}^{[k+1]} \in \operatorname{prox}_{\frac{1}{c_k}\Psi(\cdot,\mathbf{e}^{[k]})}(\mathbf{x}^{[k]})$$

$$\mathbf{e}^{[k+1]} \in \operatorname{prox}_{\frac{1}{d_k}\Psi(\mathbf{x}^{[k+1]},\cdot)}(\mathbf{e}^{[k]})$$

• Under technical assumptions, convergence of the sequence $(\mathbf{x}^{[k]}, \mathbf{e}^{[k]})_{k \in \mathbb{N}}$ to a critical point $(\widehat{\mathbf{x}}, \widehat{\mathbf{e}})$ of Ψ .

PAM = Proximal Alternating Minimization

```
\begin{split} & [\mathsf{Attouch} \ \mathsf{et} \ \mathsf{al} \ 2010] \\ & \mathsf{Set} \ \mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}. \\ & \mathsf{For} \ k \in \mathbb{N} \\ & \left[ \begin{array}{c} c_k > 0, d_k > 0 \\ \mathbf{x}^{[k+1]} \in \mathrm{Arg} \min_{\mathbf{x}} \Psi(\mathbf{x}, \mathbf{e}^{[k]}) + \frac{c_k}{2} \|\mathbf{x} - \mathbf{x}^{[k]}\|^2 \\ \mathbf{e}^{[k+1]} \in \mathrm{Arg} \min_{\mathbf{e}} \Psi(\mathbf{x}^{[k+1]}, \mathbf{e}) + \frac{d_k}{2} \|\mathbf{e} - \mathbf{e}^{[k]}\|^2 \end{split} \end{split}
```

• Can be rewritten as

For
$$k \in \mathbb{N}$$

$$\begin{vmatrix}
\mathbf{x}^{[k+1]} \in \operatorname{prox}_{\frac{1}{c_k}\Psi(\cdot,\mathbf{e}^{[k]})}(\mathbf{x}^{[k]}) = \operatorname{prox}_{\frac{1}{c_k}f+g_1(\cdot,\mathbf{e}^{[k]})}(\mathbf{x}^{[k]}) \\
\mathbf{e}^{[k+1]} \in \operatorname{prox}_{\frac{1}{d_k}\Psi(\mathbf{x}^{[k+1]},\cdot)}(\mathbf{e}^{[k]}) = \operatorname{prox}_{\frac{1}{d_k}g_1(\mathbf{x}^{[k+1]},\cdot)+g_2}(\mathbf{e}^{[k]})
\end{vmatrix}$$

 Can be difficult to compute the proximity operator of a sum of two functions.

Proximity operator of a sum of two functions

$$\operatorname{prox}_{g_1+g_2} = \operatorname{prox}_{g_2} \circ \operatorname{prox}_{g_1}?$$

- [Combettes-Pesquet, 2007] N=1, $g_2=\iota_C$ of a non-empty closed convex subset of C and g_1 is differentiable at 0 with h'(0)=0.
- [Chaux-Pesquet-Pustelnik,2009] ${\cal C}$ and g_2 are separable in the same basis.
- [Yu, 2013][Shi et al., 2017] $\partial g_2(x) \subset \partial g_2(\text{prox } g_1(x))$.
- Other recent results [Pustelnik, Condat, 2017][Yukawa, Kagami, 2017][del Aguila Pla, Jaldén, 2017]

```
PALM = Proximal Alternating Linearized Minimization
[Bolte et al 2014]
      Set \mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}
       For k \in \mathbb{N}
              Set \gamma > 1 and c_k = \gamma \nu_{a_1}(\mathbf{e}^{[k]})
           \mathbf{x}^{[k+1]} \in \operatorname{prox}_{rac{1}{c_{k}}f}\left(\mathbf{x}^{[k+1]} - rac{1}{c_{k}}
abla_{\mathbf{x}}g_{1}(\mathbf{x}^{[k]},\mathbf{e}^{[k]})
ight)
          \begin{split} & \text{Set } \tau > 1 \, \text{and} \, \overset{\,\,{}^{\sim}}{d_k} = \tau \nu_{g_1}(\mathbf{x}^{[k+1]}) \\ & \mathbf{e}^{[k+1]} \in \operatorname{prox}_{\frac{1}{d_k}g_2} \left( \mathbf{e}^{[k+1]} - \frac{1}{d_k} \nabla_{\mathbf{e}} g_1(\mathbf{x}^{[k+1]}, \mathbf{e}^{[k]}) \right) \end{split}
```

• Under technical assumptions, convergence of the sequence $(\mathbf{x}^{[k]}, \mathbf{e}^{[k]})_{k \in \mathbb{N}}$ to a critical point $(\widehat{\mathbf{x}}, \widehat{\mathbf{e}})$ of Ψ .

 $\mbox{\bf SL-PAM} = \mbox{Semi-linearized Proximal Alternating Minimization} \label{eq:sl-pam}$

```
 \begin{split} & \mathsf{Set} \; \mathbf{e}^{[0]} \in \mathbb{R}^{|\mathbb{E}|}. \\ & \mathsf{For} \; k \in \mathbb{N} \\ & \mathsf{Set} \; \gamma > 1 \, \mathsf{and} \, c_k = \gamma \nu_{g_1}(\mathbf{e}^{[k]}) \\ & \mathbf{x}^{[k+1]} \in \mathrm{prox}_{\frac{1}{c_k}f} \left(\mathbf{x}^{[k+1]} - \frac{1}{c_k} \nabla_{\mathbf{x}} g_1(\mathbf{x}^{[k]}, \mathbf{e}^{[k]})\right) \\ & \mathsf{Set} \; d_k > 0 \\ & \mathbf{e}^{[k+1]} \in \mathrm{prox}_{\frac{1}{d_k}g_1(\mathbf{x}^{[k+1]}, \cdot) + g_2}(\mathbf{e}^{[k]}) \end{split}
```

- [Foare et al., 2019]
- Under technical assumptions, convergence of the sequence $(\mathbf{x}^{[k]}, \mathbf{e}^{[k]})_{k \in \mathbb{N}}$ to a critical point $(\widehat{\mathbf{x}}, \widehat{\mathbf{e}})$ of Ψ .

Direct model

$$\mathbf{z} = \mathcal{D}(\mathbf{A}\overline{\mathbf{x}})$$

where

- $\Omega = \{1, \dots, N_1\} \times \{1, \dots, N_2\};$
- $\bar{\mathbf{x}} \in \mathbb{R}^{|\Omega|}$: original image
- $\mathbf{A} \in \mathbb{R}^{M \times |\Omega|}$: linear degradation (e.g. a blur)
- $\mathcal{D} \colon \mathbb{R}^M \to \mathbb{R}^M$: random degradation (e.g. a Gaussian or Poisson noise)
- $\mathbf{z} \in \mathbb{R}^M$: degraded image

 $\widehat{\mathbf{x}}$ and $\widehat{\mathbf{e}}$ (red)

Goal: Recover $\hat{\mathbf{x}}$ and its associated contours $\hat{\mathbf{e}}$ from \mathbf{z} .

Proposed Discrete Mumford-Shah like (D-MS) model

$$\underset{\mathbf{x}, \mathbf{e}}{\text{minimize}} \ \Psi(\mathbf{x}, \mathbf{e}) := \mathcal{L}(\mathbf{A}\mathbf{x}; \mathbf{z}) + \beta \|(1 - \mathbf{e}) \odot \mathbf{D}\mathbf{x}\|^2 + \lambda \mathcal{R}(\mathbf{e})$$

- $\mathcal{L}(A \cdot; \mathbf{z})$: data fidelity term;
- $D \in \mathbb{R}^{|\mathbb{E}| \times |\Omega|}$: models a finite difference operator;
- \mathcal{R} : favors sparse solution (i.e. "short |K|");
- $\mathbf{x} \in \mathbb{R}^{|\Omega|}$: piecewise smooth approximation of \mathbf{z} ;
- $e \in \mathbb{R}^{|\mathbb{E}|}$: edges between nodes whose value is 1 when a contour change is detected and 0 otherwise.

\mathbf{u}_1	\mathbf{u}_4	\mathbf{u}_7
\mathbf{u}_2	\mathbf{u}_5	\mathbf{u}_8
\mathbf{u}_3	\mathbf{u}_6	\mathbf{u}_9

Proposed Discrete Mumford-Shah like (D-MS) model

$$\underset{\mathbf{x},\mathbf{e}}{\text{minimize}}\ \Psi(\mathbf{x},\mathbf{e}) := \underbrace{\mathcal{L}(\mathbf{A}\mathbf{x};\mathbf{z})}_{f(\mathbf{x})} + \underbrace{\beta\|(1-\mathbf{e})\odot\mathbf{D}\mathbf{x}\|^2}_{g_1(\mathbf{x},\mathbf{e})} + \underbrace{\lambda\mathcal{R}(\mathbf{e})}_{g_2(\mathbf{e})}$$

- $\mathcal{L}(A \cdot; \mathbf{z})$: data fidelity term;
- $D \in \mathbb{R}^{|\mathbb{E}| \times |\Omega|}$: models a finite difference operator;
- \mathcal{R} : favors sparse solution (i.e. "short |K|");
- $\mathbf{x} \in \mathbb{R}^{|\Omega|}$: piecewise smooth approximation of \mathbf{z} ;
- ullet $\mathbf{e} \in \mathbb{R}^{|\mathbb{E}|}$: edges between nodes whose value is 1 when a contour change is detected and 0 otherwise.

Goal: Identify the assumptions on \mathcal{L} and \mathcal{R} to design an algorithmic scheme with **convergence guarantees** and **fast** to deal with large scale problems.

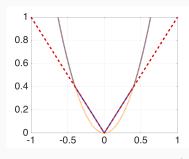
Proposed D-MS and algorithmic solution

$$\underset{\mathbf{x},\mathbf{e}}{\text{minimize}}\ \Psi(\mathbf{x},\mathbf{e}) := \mathcal{L}(A\mathbf{x};\mathbf{z}) + \beta \|(1-\mathbf{e})\odot D\mathbf{x}\|^2 + \lambda \mathcal{R}(\mathbf{e})$$

- \mathcal{R} : favors sparse solution (i.e. "short |K|") and convex.
 - Ambrosio-Tortorelli approximation:

$$\mathcal{R}(\mathbf{e}) = \|\tilde{\mathbf{D}}\mathbf{e}\|_2^2 + \frac{1}{4}\|\mathbf{e}\|_2^2 \text{ with } > 0$$

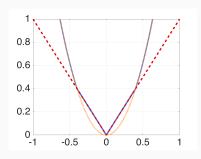
- 2. ℓ_1 -norm: $\mathcal{R}(\mathbf{e}) = \|\mathbf{e}\|_1$
- 3. Quadratic ℓ_1 : [Foare, Pustelnik, Condat, 2017] $\mathcal{R}(\mathbf{e}) = \sum_{i=1}^{|\mathbb{E}|} \max \left\{ |e_i|, \frac{e_i^2}{4} \right\}.$

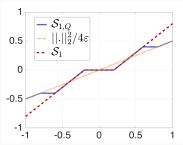


Proposed D-MS and algorithmic solution

Proposition [Foare, Pustelnik, Condat, 2017] For every $\eta \in \mathbb{R}$ and $\gamma, \epsilon > 0$

$$\operatorname{prox}_{\gamma \max\{|.|, \frac{|.|^2}{4\epsilon}\}}(\eta) = \operatorname{sign}(\eta) \, \max \Big\{ 0, \min \Big[|\eta| - \gamma, \max \Big(4\epsilon, \frac{|\eta|}{\frac{\gamma}{2\epsilon} + 1} \Big) \Big] \Big\}$$





Proposed D-MS and algorithmic solution

Proposition [Foare, Pustelnik, Condat, 2019]

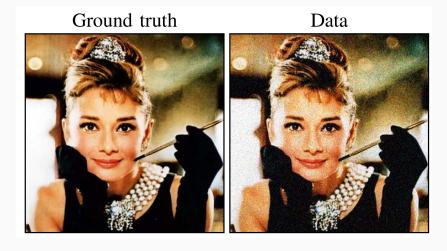
We assume that R is separable, i.e,

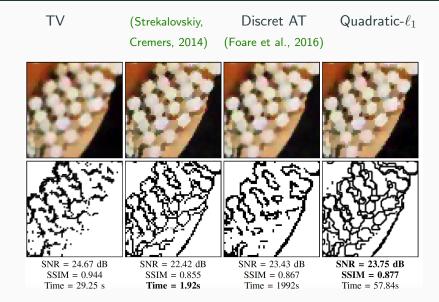
$$(orall \mathbf{e} = (\mathbf{e}_i)_{1 \leqslant i \leqslant |\mathbb{E}|}) \qquad \mathcal{R}(\mathbf{e}) = \sum_{i=1}^{|\mathbb{E}|} \sigma_i(\mathbf{e}_i),$$

where $\sigma_i : \mathbb{R}^{|\mathbb{E}|} \to]-\infty; +\infty]$ with a closed form proximity operator expression.

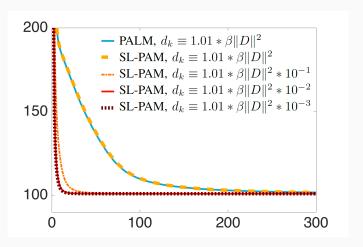
Let $d_k > 0$, then

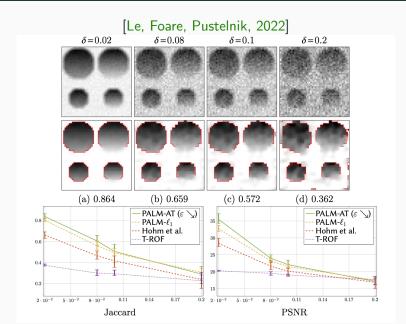
$$\operatorname{prox}_{\frac{1}{d_k}\lambda\mathcal{R} + \mathcal{S}(\mathbf{D}, \cdot)} \left(\mathbf{e}^{[k]} \right) = \left(\operatorname{prox}_{\frac{\lambda\sigma_i}{2\beta(\operatorname{Dx}^{[k]})_i^2 + d_k}} \left(\frac{\beta(\operatorname{De}^{[k]})_i^2 + \frac{d_k \mathbf{e}_i^{[k]}}{2}}{\beta(\operatorname{De}^{[k]})_i^2 + \frac{d_k}{2}} \right) \right)_{i \in \mathbb{R}}$$

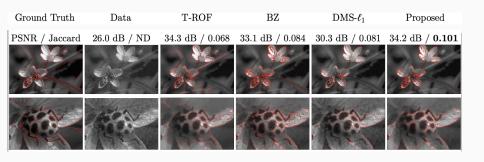




Convergence PALM versus SL-PALM: $\Psi(\mathbf{x}^{[\ell]}, \mathbf{e}^{[\ell]})$ w.r.t. iterations ℓ







Alternative formulation

$$(\widehat{\mathbf{x}}, \widehat{\mathbf{e}}) \in \underset{\substack{\mathbf{x} \in \mathbb{R}^{|\Omega|}, \\ \mathbf{e} \in \mathbb{R}^{|\mathbb{E}|}}}{\operatorname{Argmin}} \, \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{z}) + \frac{\varsigma^2}{2} \sum_{\ell=1}^{|\mathbb{E}|} \phi(\mathbf{D}_{\ell}\mathbf{x}) (1 - e_{\ell})^2 + \lambda \!\! \sum_{\ell} \psi(e_{\ell}).$$

$$\begin{split} \widehat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathbb{R}^{|\Omega|}}{\operatorname{Argmin}} \ \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{z}) + \lambda^2 \sum_{\ell=1}^{|E|} \widetilde{\phi}_{\lambda/\zeta^2} \left(\phi(\mathbf{D}_{\ell}\mathbf{x}) \right), \\ \text{and } \widehat{\mathbf{e}} = (\widehat{e}_{\ell})_{\ell \in E} \text{ with } \quad \widehat{e}_{\ell} = \begin{cases} \operatorname{prox}_{\frac{\lambda}{\zeta^2 \phi(\mathbf{D}_{\ell}\widehat{\mathbf{x}})} \psi}(1) & \text{if } \quad \phi\left(\mathbf{D}_{\ell}\widehat{\mathbf{x}}\right) > 0, \\ 0 & \text{otherwise,} \end{cases} \end{split}$$

where, for every $\eta > 0$,

$$\widetilde{\phi}_{\lambda/\zeta^2}(\eta) = \frac{\eta}{2} (1 - \operatorname{prox}_{\frac{\lambda}{\zeta^2 \eta} \psi}(1))^2 + \frac{\lambda}{\zeta^2} \psi(\operatorname{prox}_{\frac{\lambda}{\zeta^2 \eta} \psi}(1))$$

and 0 otherwise.

Alternative formulation

$$(\widehat{\mathbf{x}}, \widehat{\mathbf{e}}) \in \underset{\substack{\mathbf{x} \in \mathbb{R}^{|\Omega|}, \\ \mathbf{e} \in \mathbb{R}^{|\mathbb{E}|}}}{\min} \mathcal{L}(\mathbf{A}\mathbf{x}, \mathbf{z}) + \frac{\zeta^2}{2} \sum_{\ell=1}^{|\mathbb{E}|} \phi(\mathbf{D}_{\ell}\mathbf{x}) (1 - e_{\ell})^2 + \lambda \sum_{\ell} \psi(e_{\ell}).$$

Reformulation when $\psi = |\cdot|$ and $\phi = |\cdot|^2$,

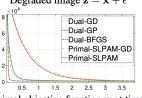
$$\begin{cases} \widehat{\boldsymbol{u}} \in \operatorname{Argmin}_{\boldsymbol{u} \in \mathbb{R}^{|\Omega|}} \mathcal{L}(A\mathbf{x}, \mathbf{z}) + \frac{\zeta^2}{2} \sum_{\ell=1}^{|E|} \widetilde{\phi}_{\lambda/\zeta^2} \big((D_\ell \mathbf{x})^2 \big), \\ (\forall \ell) \quad \widehat{e}_\ell = \begin{cases} \operatorname{prox}_{\frac{\lambda}{\zeta^2(D_\ell \widehat{\boldsymbol{u}})^2}|\cdot|} (1) & \text{if} \quad (D_\ell \widehat{\mathbf{x}})^2 > 0, \\ 0 & \text{otherwise}, \end{cases} \end{cases}$$

where

$$(\forall \eta \geqslant 0) \quad \widetilde{\phi}_{\lambda/\zeta^2}(\eta) = \begin{cases} \frac{\lambda}{\zeta^2}(2 - \frac{\lambda}{\zeta^2\eta}) & \quad \text{if} \quad \eta > \frac{\lambda}{\zeta^2}, \\ \eta & \quad \text{if} \quad 0 < \eta \leqslant \frac{\lambda}{\zeta^2}, \\ 0 & \quad \text{if} \quad \eta = 0. \end{cases}$$

Original image $\overline{\mathbf{x}}$

Degraded image $\mathbf{z} = \overline{\mathbf{x}} + \epsilon$



Primal objective function w.r.t time

Restored image \hat{x}

Estimated contours ê

Nonsmooth nonconvex optimization: nonlinear operator

$$\min_{\mathbf{x}} \Psi(\mathbf{x}) := f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

- If f is smooth, forward-backward requires $A^* \circ \nabla f \circ A$.
- If f is nonsmooth, require the computation of $\operatorname{prox}_{f(A\cdot)}$.
 - Few closed form.
- Reformulation in the dual: $\min_{\mathbf{w} \in \mathcal{G}} f^*(\mathbf{w}) + g^*(-A^*\mathbf{w}),$

Let \mathcal{H} be a Hilbert space and $f \colon \mathcal{H} \to]-\infty, +\infty].$

The **conjugate** of f is the function $f^* \colon \mathcal{H} \to [-\infty, +\infty]$ such that

$$(\forall \mathbf{u} \in \mathcal{H})$$
 $f^*(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{H}} (\langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})).$

Let \mathcal{H} be a Hilbert space and $f \colon \mathcal{H} \to]-\infty, +\infty]$.

The conjugate of f is the function $f^* \colon \mathcal{H} \to [-\infty, +\infty]$ such that

$$(\forall \mathbf{u} \in \mathcal{H})$$
 $f^*(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{H}} (\langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})).$

Examples:

$$\bullet \ f = \frac{1}{2}\|\cdot\|^2 \Rightarrow f^* = \frac{1}{2}\|\cdot\|^2$$

 $\begin{array}{l} \underline{\mathsf{Proof}} : \ \mathsf{For} \ \mathsf{every} \ (\mathbf{x}, \mathbf{u}) \in \mathcal{H}^2, \\ \langle \mathbf{x} \mid \mathbf{u} \rangle - \frac{1}{2} \|\mathbf{u}\|^2 = \frac{1}{2} \|\mathbf{u}\|^2 - \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \ \mathsf{is} \ \mathsf{maximum} \ \mathsf{at} \ \mathbf{x} = \mathbf{u}. \\ \mathsf{Consequently}, \ f^*(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|^2. \end{array}$

Let $\mathcal H$ be a Hilbert space and $f\colon \mathcal H\to]-\infty,+\infty].$ The **conjugate** of f is the function $f^*\colon \mathcal H\to [-\infty,+\infty]$ such that

$$(\forall \mathbf{u} \in \mathcal{H})$$
 $f^*(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{H}} (\langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})).$

Examples:

$$\bullet \ f = \frac{1}{2} \|\cdot\|^2 \Rightarrow f^* = \frac{1}{2} \|\cdot\|^2 \ .$$

$$\begin{split} \bullet & \ \, (\forall \mathbf{x} \in \mathbb{R}^N) \,\, f(\mathbf{x}) = \frac{1}{q} \|\mathbf{x}\|_q^q \,\, \text{with} \,\, q \in]1, +\infty[\\ & \Rightarrow (\forall \mathbf{u} \in \mathbb{R}^N) \,\, f^*(\mathbf{u}) = \frac{1}{q^*} \|\mathbf{u}\|_{q^*}^{q^*} \,\, \text{with} \,\, \frac{1}{q} + \frac{1}{q^*} = 1 \end{split}$$

Let \mathcal{H} be a Hilbert space and $f \colon \mathcal{H} \to]-\infty, +\infty]$.

The **conjugate** of f is the function $f^* \colon \mathcal{H} \to [-\infty, +\infty]$ such that

$$(\forall \mathbf{u} \in \mathcal{H})$$
 $f^*(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{H}} (\langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})).$

Moreau-Fenchel theorem

Let $\mathcal H$ be a Hilbert space and $f\colon \mathcal H\to]-\infty,+\infty]$ be a proper function.

$$f$$
 is l.s.c. and convex $\Leftrightarrow f^{**} = f$.

$$\min_{\mathbf{x}} \, \Psi(\mathbf{x}) := f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

Assumptions: For $f \in \Gamma_0(\mathcal{G})$ and $g \in \Gamma_0(\mathcal{H})$.

$$\begin{split} \min_{\mathbf{x}} \Psi(\mathbf{x}) &:= f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) = \min_{\mathbf{x}} \sup_{\mathbf{u}} \left(\left\langle \mathbf{A}\mathbf{x} \mid \mathbf{u} \right\rangle - f^*(\mathbf{u}) \right) + g(\mathbf{x}) \\ &= \max_{\mathbf{u}} \inf_{\mathbf{x}} \left(\left\langle \mathbf{x} \mid \mathbf{A}^* \mathbf{u} \right\rangle - f^*(\mathbf{u}) \right) + g(\mathbf{x}) \\ &= \max_{\mathbf{u}} - f^*(\mathbf{u}) - g^*(-\mathbf{A}^* \mathbf{u}) \end{split}$$

Comment extracted from [Chambolle, Pock, 2016]: Under very mild conditions on f,g (such as f(0) i \hat{a} and g continuous at 0 (see e.g. [Ekeland, Témam,1999, (4.21)]; in finite dimensions it is sufficient to have a point x with both Kx in the relative interior of domf and x in the relative interior of dom g [Rockafellar 1997, Corollary 31.2.1)], one can swap the min and sup.

Primal problem

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

Let
$$f: \mathcal{G} \to]-\infty, +\infty]$$
, $g: \mathcal{H} \to]-\infty, +\infty]$.

We want to

$$\underset{\mathbf{x} \in \mathcal{H}}{\text{minimise}} \ f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}).$$

Dual problem

Let $\mathcal H$ and $\mathcal G$ be two real Hilbert spaces. Let $A\in \mathcal B(\mathcal H,\mathcal G).$

Let $f \colon \mathcal{G} \to]-\infty, +\infty]$, $g \colon \mathcal{H} \to]-\infty, +\infty]$.

We want to

$$\underset{\mathbf{v} \in \mathcal{G}}{\text{minimise}} \ f^*(\mathbf{v}) + g^*(-\mathbf{A}^*\mathbf{v}).$$

Weak duality

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let f be a proper function from \mathcal{G} to $]-\infty, +\infty]$, g be a proper function from \mathcal{H} to $]-\infty, +\infty]$.

$$\boldsymbol{\mu} = \inf_{\mathbf{x} \in \mathcal{H}} f(A\mathbf{x}) + g(\mathbf{x}) \quad \text{and} \quad \boldsymbol{\mu}^* = \inf_{\mathbf{v} \in \mathcal{G}} f^*(\mathbf{v}) + g^*(-A^*\mathbf{v}).$$

We have $\mu \geqslant -\mu^*$. If $\mu \in \mathbb{R}$, $\mu + \mu^*$ is the **duality gap**.

Weak duality

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let f be a proper function from \mathcal{G} to $]-\infty, +\infty]$, g be a proper function from \mathcal{H} to $]-\infty, +\infty]$.

$$\boldsymbol{\mu} = \inf_{\mathbf{x} \in \mathcal{H}} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) \quad \text{and} \quad \boldsymbol{\mu}^* = \inf_{\mathbf{v} \in \mathcal{G}} f^*(\mathbf{v}) + g^*(-\mathbf{A}^*\mathbf{v}).$$

We have $\mu \geqslant -\mu^*$. If $\mu \in \mathbb{R}$, $\mu + \mu^*$ is the **duality gap**.

<u>Proof</u>: According to Fenchel-Young inequality, for every $\mathbf{x} \in \mathcal{H}$ and $\mathbf{v} \in \mathcal{G}$,

$$f(A\mathbf{x}) + g(\mathbf{x}) + f^*(\mathbf{v}) + g^*(-A^*\mathbf{v}) \geqslant \langle A\mathbf{x} \mid \mathbf{v} \rangle + \langle \mathbf{x} \mid -A^*\mathbf{v} \rangle = 0.$$

Strong duality

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H},\mathcal{G})$ Let $f \in \Gamma_0(\mathcal{G})$ and $g \in \Gamma_0(\mathcal{H})$

If $\operatorname{int}(\operatorname{dom} f) \cap \operatorname{A}(\operatorname{dom} g) \neq \emptyset$ or $\operatorname{dom} f \cap \operatorname{int}(\operatorname{A}(\operatorname{dom} g)) \neq \emptyset$, then

$$\mu = \inf_{\mathbf{x} \in \mathcal{H}} f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}) = -\min_{\mathbf{v} \in \mathcal{G}} f^*(\mathbf{v}) + g^*(-\mathbf{A}^*\mathbf{v}) = -\mu^*.$$

Duality theorem

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $A \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let $f \in \Gamma_0(\mathcal{G}), g \in \Gamma_0(\mathcal{H})$.

- If there exists $\widehat{\mathbf{x}} \in \mathcal{H}$ such that $0 \in A^* \partial f(A\widehat{\mathbf{x}}) + \partial g(\widehat{\mathbf{x}})$, then $\widehat{\mathbf{x}}$ is a solution to the primal problem. Moreover, there exists a solution $\widehat{\mathbf{v}}$ to the dual problem such that $-A^* \widehat{\mathbf{v}} \in \partial g(\widehat{\mathbf{x}})$ and $A\widehat{\mathbf{x}} \in \partial f^*(\widehat{\mathbf{v}})$.
- If there exists $(\widehat{\mathbf{x}}, \widehat{\mathbf{v}}) \in \mathcal{H} \times \mathcal{G}$ such that $-A^*\widehat{\mathbf{v}} \in \partial g(\widehat{\mathbf{x}})$ and $A\widehat{\mathbf{x}} \in \partial f^*(\widehat{\mathbf{v}})$ then $\widehat{\mathbf{x}}$ (resp. $\widehat{\mathbf{v}}$) is a solution to the primal (resp. dual) problem.

If $(\widehat{\mathbf{x}}, \widehat{\mathbf{v}}) \in \mathcal{H} \times \mathcal{G}$ is such that $-A^*\widehat{\mathbf{v}} \in \partial g(\widehat{\mathbf{x}})$ and $A\widehat{\mathbf{x}} \in \partial f^*(\widehat{\mathbf{v}})$, then $(\widehat{\mathbf{x}}, \widehat{\mathbf{v}})$ is called a Kuhn-Tucker point.

$$\min_{\mathbf{x}} \Psi(\mathbf{x}) := f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

- If f is smooth, forward-backward requires $A^* \circ \nabla f \circ A$.
- If f is nonsmooth, require the computation of $\operatorname{prox}_{f(A\cdot)}$.
 - Few closed form.
- $\bullet \ \ \text{Reformulation in the dual:} \qquad \min_{\mathbf{v} \in \mathcal{G}} f^*(\mathbf{v}) + g^*(-\mathbf{A}^*\mathbf{v}),$

$$\min_{\mathbf{x}} \Psi(\mathbf{x}) := f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})$$

Primal-dual algorithms [Chambolle-Pock,2011]

Hyperparameters setting: $\tau > 0$, $\gamma > 0$, such that $\tau \gamma \|A\|^2 < 1$ For $k = 0, 1, \ldots$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau g} \big(\mathbf{x}^{[k]} - \tau \mathbf{A}^* \mathbf{v}^{[k]} \big) \\ \mathbf{v}^{[k+1]} = \operatorname{prox}_{\gamma f^*} \big(\mathbf{v}^{[k]} + \gamma \mathbf{A} (2 \mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \big) \end{bmatrix}$$

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$. Let $f \in \Gamma_0(\mathcal{G}), \ g \in \Gamma_0(\mathcal{H})$.

$$\min_{\mathbf{x}} \max_{\mathbf{u}} \ g(\mathbf{x}) + \langle \mathbf{A}\mathbf{x} \mid \mathbf{u} \rangle - f^*(\mathbf{u})$$

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $\mathcal{A} \in C^1(\mathcal{H}, \mathcal{G})$. Let $f \in \Gamma_0(\mathcal{G}), \ q \in \Gamma_0(\mathcal{H})$.

$$\min_{\mathbf{x}} \max_{\mathbf{u}} g(\mathbf{x}) + \langle \mathcal{A}(\mathbf{x}) \mid \mathbf{u} \rangle - f^*(\mathbf{u})$$

• 1st-order optimality conditions for (\hat{x}, \hat{v}) [Valkonen,2014]

$$\begin{cases} -\nabla \mathcal{A}(\widehat{\mathbf{x}})^* \widehat{\mathbf{v}} \in \partial g(\widehat{\mathbf{x}}) \\ \mathcal{A}(\widehat{\mathbf{x}}) \in \partial f^*(\widehat{\mathbf{v}}) \end{cases}$$

Let \mathcal{H} and \mathcal{G} be two real Hilbert spaces. Let $\mathcal{A} \in C^1(\mathcal{H}, \mathcal{G})$. Let $f \in \Gamma_0(\mathcal{G})$, $g \in \Gamma_0(\mathcal{H})$.

$$\min_{\mathbf{x}} \max_{\mathbf{u}} \ g(\mathbf{x}) + \langle \mathcal{A}(\mathbf{x}) \mid \mathbf{u} \rangle - f^*(\mathbf{u})$$

Primal-dual algo. for nonlinear operators [Valkonen, 2014]

Hyperparameters setting: $\tau > 0$, $\gamma > 0$ + conditions to satisfy.

For
$$k = 0, 1, ...$$

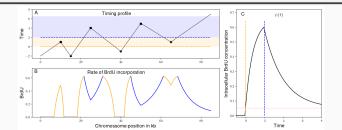
$$\begin{split} \mathbf{x}^{[k+1]} &= \mathrm{prox}_{\tau g} \big(\mathbf{x}^{[k]} - \tau \nabla \mathcal{A}(\mathbf{x}^{[k]})^* \mathbf{v}^{[k]} \big) \\ \mathbf{v}^{[k+1]} &= \mathrm{prox}_{\gamma f^*} \big(\mathbf{v}^{[k]} + \gamma (\mathcal{A}(\mathbf{x}^{[k]}) + \nabla \mathcal{A}(\mathbf{x}^{[k]})^* (2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \big) \end{split}$$

- τ: Timing profile.
- z: Signal provided by FORK-seq.
- ullet ${\cal A}$ the coordinatewise composition of nonlinear function φ that measures the concentration of BrdU in time.

$$zpprox \mathcal{A}(oldsymbol{ au})$$

with
$$(\forall \boldsymbol{\tau} = (\tau_1, ..., \tau_n) \in \mathbb{R}^n)$$
 $\mathcal{A}(\boldsymbol{\tau}) = (\alpha(\tau_1), ..., \alpha(\tau_n)).$

Assumptions: τ is in the set of piecewise linear vectors with a maximum of C>0 breakpoints. [Lage, C. et al. 2024]



- τ: Timing profile.
- z: Signal provided by FORK-seq.
- ullet ${\cal A}$ the coordinatewise composition of nonlinear function φ that measures the concentration of BrdU in time.

$$\mathbf{z} pprox \mathcal{A}(\mathbf{x})$$

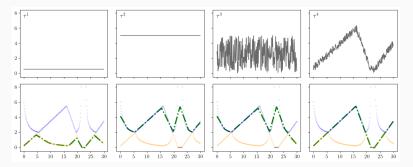
with
$$(\forall \mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n)$$
 $\mathcal{A}(\mathbf{x}) = (\alpha(x_1), ..., \alpha(x_n)).$

Assumptions: ${\bf x}$ is in the set of piecewise linear vectors with a maximum of C>0 breakpoints.

$$\widehat{\mathbf{x}} := \underset{\mathbf{x} \in \mathcal{P}_C}{\operatorname{argmin}} \|\mathbf{z} - \mathcal{A}(\mathbf{x})\|_2^2.$$

with

$$\mathcal{P}_C := \{ \mathbf{x} : \| \mathbf{D} \mathbf{x} \|_0 \leqslant C \}$$



Results of Valkonen's algorithm for different initial points.

(**Top**): different values of $\mathbf{x}^{[0]}$.

(**Bottom**): solutions of the Valkonen's algorithm in green. In orange we observe $\mathbf{z}^0 = \mathcal{A}_0^{-1}(\mathbf{z})$ and in blue $\mathbf{z}^1 = \mathcal{A}_1^{-1}(\mathbf{z})$.

Alternative optimization problem

$$(\mathbf{x}^*, \mathbf{d}^*) := \underset{\{(\mathbf{x}, \mathbf{d}) \in \mathcal{P}_C \times \{0,1\}^n\}}{\operatorname{argmin}} \|\mathbf{x} - \mathcal{A}_{\mathbf{d}}^{-1}(\mathbf{z})\|_{w_{\mathbf{d}}}^2,$$

with

$$\mathcal{A}_{\mathbf{d}}^{-1}(\mathbf{z}) := (\varphi_{d_1}^{-1}(\mathbf{z}_1), ..., \varphi_{d_n}^{-1}(\mathbf{z}_n)) \in \mathbb{R}^n$$

and

$$w_{\mathbf{d}} := (1 - \mathbf{d}) \odot w_0 + \mathbf{d} \odot w_1, \text{ for all } i \in \{1, ..., n\},\$$

and

$$w_{0,i} := \begin{cases} \varphi^{'}(\varphi_0^{-1}(\mathbf{z}_i)) & \varphi_0^{-1}(\mathbf{z}_i) \neq \varnothing \\ 0 & \varphi_0^{-1}(\mathbf{z}_i) = \varnothing, \end{cases}$$
$$w_{1,i} := \begin{cases} \psi^{'}(\varphi_1^{-1}(\mathbf{z}_i)) & \varphi_1^{-1}(\mathbf{z}_i) \neq \varnothing \\ 0 & \varphi_1^{-1}(\mathbf{z}_i) = \varnothing. \end{cases}$$

Alternative optimization problem

$$(\mathbf{x}^*, \mathbf{d}^*) := \mathop{\mathrm{argmin}}_{\{(\mathbf{x}, \mathbf{d}) \in \mathcal{P}_C \times \{0, 1\}^n\}} \|\mathbf{x} - \mathcal{A}_{\mathbf{d}}^{-1}(\mathbf{z})\|_{w_{\mathbf{d}}}^2,$$

Algorithm

Initialization: \mathcal{D} , w_0, w_1 , and $\mathcal{D}_{\mathsf{past}} = \emptyset$

For $oldsymbol{d} \in \mathcal{D}$

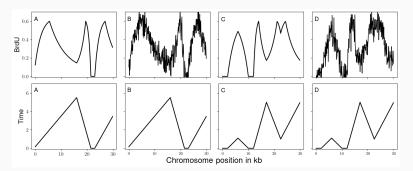
Step 0: $\mathcal{D}_{\text{past}} \leftarrow \mathcal{D}_{\text{past}} \cup \{d\}$.

Step 1: Solve the optimization problem

$$\mathbf{x}_{\mathbf{d}}^* = \operatorname{argmin} \ \frac{1}{2} \|\mathbf{d} \odot (\mathbf{x} - \mathbf{z}_1)\|_{\mathbf{w}_1}^2 + \frac{1}{2} \|(1 - \mathbf{d}) \odot (\mathbf{x} - \mathbf{z}_0)\|_{\mathbf{w}_0}^2 + \lambda \|\mathrm{D}\mathbf{x}\|_1.$$

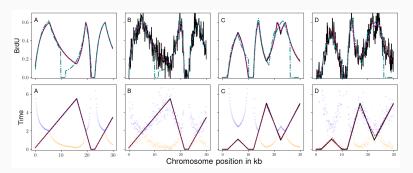
Step 2: Extract the optimal $\mathbf{x}^*_{\mathbf{d}}$ for $\mathbf{d} \in \mathcal{D}_{\mathsf{past}}$:

$$(\mathbf{x}^*, \mathbf{d}^*) := \underset{\{\mathbf{x}_{\mathbf{d}}^*, \ \mathbf{d} \in \mathcal{D}_{\mathsf{past}}\}}{\operatorname{argmin}} F(\mathbf{x}_{\mathbf{d}}^*) := \frac{1}{2} \|\mathbf{d} \odot (\mathbf{x}_{\mathbf{d}}^* - \mathbf{z}_1)\|^2 + \frac{1}{2} \|(1 - \mathbf{d}) \odot (\mathbf{x}_{\mathbf{d}}^* - \mathbf{z}_0)\|^2.$$



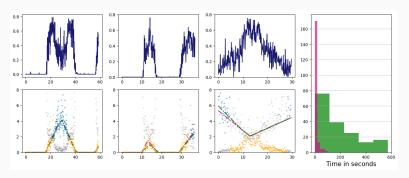
(**Top**) Simulated signals A,B,C,D (black). Approximations of each signal computed by DNA-inverse (magenta) and Matching Pursuit (green).

(**Bottom**) Timing profile obtained via the DNA-inverse (magenta) compared to ground truth (black). In orange $\mathcal{A}_0^{-1}(\mathbf{z})$, and in blue $\mathcal{A}_1^{-1}(\mathbf{z})$ for each simulated signal .



(**Top**) Simulated signals A,B,C,D (black). Approximations of each signal computed by DNA-inverse (magenta) and Matching Pursuit (green).

(**Bottom**) Timing profile obtained via the DNA-inverse (magenta) compared to ground truth (black). In orange $\mathcal{A}_0^{-1}(\mathbf{z})$, and in blue $\mathcal{A}_1^{-1}(\mathbf{z})$ for each simulated signal .



(**Top**) Different reads in blue. (**Bottom**) Solution $\mathbf{x}_{\text{DNA-inverse}}^*$ (magenta) and $\mathbf{x}_{\text{Adapted Valkonen}}^*$ (green) for the different reads.

References for nonconvex optimization

- Garrigos, G., Descent dynamical systems and algorithms for tame optimization and multi-objective problems, 2015.
- Repetti, A., Algorithmes d'optimisation en grande dimension : applications à la résolution de problèmes inverses, 2015.
- Valkonen, T., First-order primal-dual methods for nonsmooth nonconvex optimisation, Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, editors: Chen, et al., 2021.
- Gribonval, R., Nikolova, M., A characterization of proximity operators. Journal of Mathematical Imaging and Vision, 62(6), 773-789, 2020.
- Gribonval, R., Should penalized least squares regression be interpreted as maximum a posteriori estimation?, IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2405â2410, May 2011.
- Bolte, J., Sabach, S., Teboulle, M., Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1), 459-494, 2024.

References for nonconvex optimization

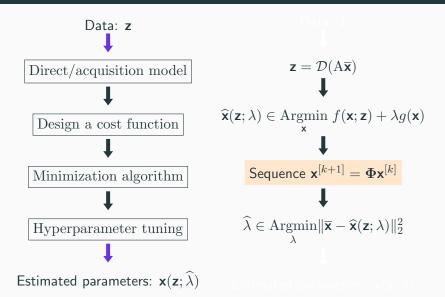
- Le, T.V., Foare, M., Pustelnik, N., Proximal based strategies for solving Discrete Mumford-Shah with Ambrosio-Tortorelli penalization on edges, IEEE Signal Processing Letters, vol. 29, pp. 952- 956, 2022.
- Foare, M., Pustelnik, N., Condat, L., Semi-linearized proximal alternating minimization for a discrete Mumford-Shah model, IEEE Trans. on Image Processing, vol. 29, pp 2176-2189, Oct. 2019.
- Pustelnik, N., On the primal and dual formulations of the discrete Mumford-Shah functional, IEEE ICASSP, 2023.
- Lage, C. , Pustelnik, N., Arbona, J.-M., Audit, B., Gribonval, R. Identifying a piecewise affine signal from its nonlinear observation application to DNA replication analysis, 2024.

Conclusions on nonconvex optimization

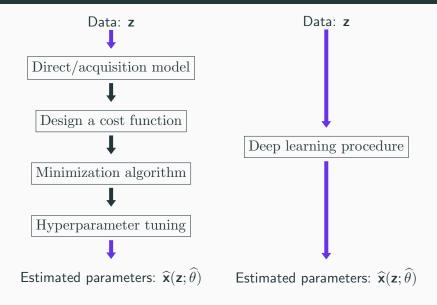
- Extension of subdifferential and proximal operator for nonconvex case.
- Allows for convergence to critical points.
- Sensitivity to initialization.
- Main challenge: provide good initialization.
- Linear convergence rate in the non-convex setting? Performance diagram?.

Toward deep learning

Context



Standard learning and deep learning

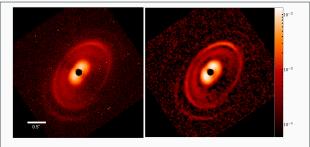


Context: Image restoration

 \longrightarrow Data: $\mathbf{z} \in \mathbb{R}^M$ degraded version of an original image $\overline{\mathbf{x}} \in \mathbb{R}^N$:

$$\mathbf{z} = \mathbf{A}\overline{\mathbf{x}} + \mathbf{w}$$

- $A \in \mathbb{R}^{M \times N}$: linear degradation (e.g. a blur)
- w: noise (e.g. Gaussian noise)



SPHERE-IRDIS

Training a prediction function for a restoration task

Training a prediction function for a restoration task

■ Database: $S = \{(\mathbf{z}_i, \overline{\mathbf{x}}_i) \in \mathbb{R}^M \times \mathbb{R}^N \mid i \in \{1, \dots, \mathbb{L}\}\}$ We consider two sets of images: the *training set* $(\mathbf{z}_i, \overline{\mathbf{x}}_i)_{i \in \mathbb{I}}$ of size $\sharp \mathbb{I}$ and the *testing set* $(\mathbf{z}_j, \overline{\mathbf{x}}_j)_{j \in \mathbb{J}}$ of size $\sharp \mathbb{J}$ where $(\forall i \in \mathbb{I} \cup \mathbb{J})$ $\mathbf{z}_i = A\overline{\mathbf{x}}_i + \mathbf{w}_i$

Training a prediction function for a restoration task

■ Database: $S = \{(\mathbf{z}_i, \overline{\mathbf{x}}_i) \in \mathbb{R}^M \times \mathbb{R}^N \mid i \in \{1, \dots, \mathbb{L}\} \}$ We consider two sets of images: the *training set* $(\mathbf{z}_i, \overline{\mathbf{x}}_i)_{i \in \mathbb{I}}$ of size $\sharp \mathbb{I}$ and the *testing set* $(\mathbf{z}_j, \overline{\mathbf{x}}_j)_{j \in \mathbb{J}}$ of size $\sharp \mathbb{J}$ where $(\forall i \in \mathbb{I} \cup \mathbb{J})$ $\mathbf{z}_i = A\overline{\mathbf{x}}_i + \mathbf{w}_i$

Training: A prediction function f_{Θ} is learned using the training set:

$$\widehat{\Theta} \in \operatorname{Argmin}_{\Theta} \frac{1}{\sharp \mathbb{I}} \sum_{i \in \mathbb{I}} \|\overline{\mathbf{x}}_i - f_{\Theta}(\mathbf{z}_i)\|^2$$

Testing: The learned $f_{\widehat{\Theta}}$ is then validated on the testing set. A properly trained network should satisfy $(\forall j \in \mathbb{J}) \quad \overline{\mathbf{x}}_j \approx f_{\widehat{\Theta}}(\mathbf{z}_j).$

Variational approach versus Deep learning architecture

$$\begin{array}{ll} \textbf{Deep learning} & f_{\Theta}(\mathbf{z}_i) = \pmb{\eta}^{[K]} \big(W^{[K]} \dots \pmb{\eta}^{[1]} \big(W^{[1]}\mathbf{z}_i + b^{[1]}\big) \dots + b^{[K]}\big) \\ & \odot \text{ Linear operators:} & W^{[1]}, W^{[2]}, \dots, W^{[K]} \\ & \odot \text{ Activation functions:} & \pmb{\eta}^{[1]}, \pmb{\eta}^{[2]}, \dots, \pmb{\eta}^{[K]} \\ & \odot \text{ Biais vectors:} & b^{[1]}, b^{[2]}, \dots, b^{[K]} \\ & \Rightarrow & \Theta = \{W^{[1]}, \dots, W^{[K]}, b^{[1]}, \dots, b^{[K]}\} \end{array}$$

Mixing variational approach and Deep learning architecture

→ Synthesis formulation:

$$\boxed{\min_{\mathbf{x}} \frac{1}{2} \|\mathrm{AD}^*\mathbf{x} - \mathbf{z}\|_2^2 + \lambda \|\mathbf{x}\|_1} \text{ where } \mathrm{H} = \mathrm{AD}^* \in \mathbb{R}^{\overline{N} \times N}$$

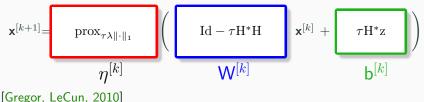
→ Forward-backward iterations:

$$|\mathbf{x}|^{[k+1]} = \operatorname{prox}_{\tau \lambda \|\cdot\|_1} (\mathbf{x}^{[k]} - \tau \mathbf{H}^* (\mathbf{H} \mathbf{x}^{[k]} - \mathbf{z}))$$

→ Reformulation:

$$\mid \mathbf{x}^{[k+1]} = \mathrm{prox}_{\tau\lambda \parallel \cdot \parallel_1} ((\mathbf{I} - \tau \mathbf{H}^* \mathbf{H}) \mathbf{x}^{[k]} + \tau \mathbf{H}^* \ \mathbf{z}))$$

→ Layer network:



Unfolded schemes: Study case on

denoising

D(i)FB algorithm

Objective:
$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathrm{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

- $\bullet \ \ C \subset \mathcal{H}$ is a closed, convex, non-empty.
- $D \colon \mathcal{H} \to \mathcal{G}$ and $g \in \Gamma_0(\mathcal{G})$

D(i)FB algorithm

$$\text{OBJECTIVE:} \quad \widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \tfrac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathrm{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

- $\bullet \ \ C \subset \mathcal{H}$ is a closed, convex, non-empty.
- $\bullet \ D \colon \mathcal{H} \to \mathcal{G} \ \text{and} \ g \in \Gamma_0(\mathcal{G})$

ALGORITHM: Let
$$\mathbf{v}^{[0]} \in \mathcal{G}$$
, For $k = 0, 1, \dots$
$$\begin{bmatrix} \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu_{\mathcal{G}})^*} \left(\mathbf{v}^{[k]} + \tau_k \operatorname{DP}_C(\mathbf{z} - \operatorname{D}^\top \mathbf{v}^{[k]}) \right) \\ \mathbf{v}^{[k+1]} = (1 + \rho_k) \mathbf{u}^{[k+1]} - \rho_k \mathbf{u}^{[k]} \end{bmatrix}$$

D(i)FB algorithm

$$\text{Objective:} \quad \widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \tfrac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

- ullet $C\subset\mathcal{H}$ is a closed, convex, non-empty.
- D: $\mathcal{H} \to \mathcal{G}$ and $g \in \Gamma_0(\mathcal{G})$

Algorithm: Let
$$\mathbf{v}^{[0]} \in \mathcal{G}$$
,

For
$$k = 0, 1, ...$$

For
$$k = 0, 1, \dots$$

$$\begin{bmatrix} \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{v}^{[k]} + \tau_k \operatorname{DP}_C (\mathbf{z} - \operatorname{D}^\top \mathbf{v}^{[k]}) \right) \\ \mathbf{v}^{[k+1]} = (1 + \rho_k) \mathbf{u}^{[k+1]} - \rho_k \mathbf{u}^{[k]} \end{bmatrix}$$

THEOREM: Assume that one of the following conditions is satisfied.

- (DFB): $\forall k \in \mathbb{N}, \tau_k \in (0, 2/\|\mathbf{D}\|_S^2)$, and $\rho_k = 0$.
- (DIFB): $\forall k \in \mathbb{N}, \ \tau_k \in (0, 1/\|\mathbf{D}\|_S^2), \ \rho_k = \frac{t_k 1}{t_{k+1}} \text{ with } t_k = \frac{k + a 1}{a} \text{ and } a > 2.$

Then we have $\widehat{\mathbf{x}} = \lim_{k \to \infty} \mathrm{P}_C(\mathbf{z} - \mathrm{D}^\top \mathbf{u}^{[k]})$.

(Sc)CP algorithm

Objective:
$$\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathrm{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

- $\bullet \ \ C \subset \mathcal{H}$ is a closed, convex, non-empty.
- $\bullet \ \ D \colon \mathcal{H} \to \mathcal{G} \ \text{and} \ \mathsf{g} \in \Gamma_0(\mathcal{G})$

(Sc)CP algorithm

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

- ullet $C\subset\mathcal{H}$ is a closed, convex, non-empty.
- D: $\mathcal{H} \to \mathcal{G}$ and $g \in \Gamma_0(\mathcal{G})$

ALGORITHM: Let $\mathbf{x}^{[0]} \in \mathcal{H}$ and $\mathbf{u}^{[0]} \in \mathcal{G}$.

For
$$k = 0, 1, ...$$

For
$$k = 0, 1, \dots$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\frac{\mu_k}{1 + \mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1 + \mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \mathbf{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \left((1 + \alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}^{[k]} \right) \right) \end{bmatrix}$$

(Sc)CP algorithm

$$\text{OBJECTIVE:} \quad \widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \tfrac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

- ullet $C\subset\mathcal{H}$ is a closed, convex, non-empty.
- D: $\mathcal{H} \to \mathcal{G}$ and $g \in \Gamma_0(\mathcal{G})$

ALGORITHM: Let $\mathbf{x}^{[0]} \in \mathcal{H}$ and $\mathbf{u}^{[0]} \in \mathcal{G}$.

For
$$k = 0, 1, ...$$

$$\begin{aligned} & \text{For } k = 0, 1, \dots \\ & \mathbf{x}^{[k+1]} = \mathrm{P}_C \left(\frac{\mu_k}{1 + \mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1 + \mu_k} \mathbf{x}^{[k]} \right) \\ & \mathbf{u}^{[k+1]} = \mathrm{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \Big((1 + \alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}^{[k]} \Big) \right) \end{aligned}$$

THEOREM: Assume that one of the following conditions is satisfied.

- (CP): $\tau_k \mu_k \|D\|_S^2 < 1$, and $\alpha_k = 1$.
- (SCCP): $\alpha_k = \sqrt{1 + 2\mu_k}^{-1}$, $\mu_{k+1} = \alpha_k \mu_k$, $\tau_{k+1} = \tau_k \alpha_k^{-1}$ with $\mu_0 \tau_0 \|D\|_S^2 \leq 1$.

Then we have $\hat{\mathbf{x}} = \lim_{k \to \infty} \mathbf{x}^{[k]}$.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

$$\begin{aligned} & \text{Algorithm: For } k = 0, 1, \dots \\ & \left[\begin{array}{l} \mathbf{x}^{[k+1]} = P_C \left(\frac{\mu_k}{1 + \mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1 + \mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = & \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \Big((1 + \alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}_k \Big) \right) \end{aligned} \right. \end{aligned}$$

S(c)CP: Starting point.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

Algorithm: For
$$k = 0, 1, \dots$$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} = P_C \left(\frac{\mu_k}{1 + \mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1 + \mu_k} \mathbf{x}^{[k]} \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \left((1 + \alpha_k) \mathbf{x}^{[k+1]} - \alpha_k \mathbf{x}_k \right) \right) \end{bmatrix}$$

- **▼ S(c)CP:** Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\mathbf{x}^{[k+1]} = P_C \left(\frac{\mu_k}{1 + \mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1 + \mu_k} \mathbf{x}^{[k]} \right)$$

$$\mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right)$$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\mathbf{x}^{[k+1]} = P_C \left(\frac{\mu_k}{1 + \mu_k} (\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]}) + \frac{1}{1 + \mu_k} \mathbf{x}^{[k]} \right)$$

$$\mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right)$$

- S(c)CP: Starting point.
- Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- DFB: $\mu_k \to +\infty$.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

$$\begin{split} & \text{Algorithm: For } k = 0, 1, \dots \\ & \left| \begin{array}{l} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]} \right) \\ & \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \\ \end{split} \right. \end{aligned}$$

- S(c)CP: Starting point.
- **◆** Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- DFB: $\mu_k \to +\infty$.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

$$\begin{split} & \text{Algorithm: For } k = 0, 1, \dots \\ & \left[\begin{array}{l} \mathbf{x}^{[k+1]} = \mathbf{P}_C \left(\mathbf{z} - \mathbf{D}^\top \mathbf{u}^{[k]} \right) \\ & \mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right) \end{array} \right. \end{aligned}$$

- S(c)CP: Starting point.
- **◆** Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- DFB: $\mu_k \to +\infty$.
- **▼ DiFB:** Inertia step on the dual variable.

Objective:
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{argmin}} \Big\{ \mathsf{F}(\mathbf{x}) = \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathsf{D}\mathbf{x}) + \iota_C(\mathbf{x}) \Big\}$$

ALGORITHM: For
$$k = 0, 1, ...$$

$$\mathbf{x}^{[k+1]} = P_C \left(\mathbf{z} - \mathbf{D}^{\top} \mathbf{v}^{[k]} \right)$$

$$\mathbf{u}^{[k+1]} = \operatorname{prox}_{\tau_k(\nu g)^*} \left(\mathbf{u}^{[k]} + \tau_k \mathbf{D} \mathbf{x}^{[k+1]} \right)$$

$$\mathbf{v}^{[k+1]} = (1 + \rho_k) \mathbf{u}^{[k+1]} - \rho_k \mathbf{u}^{[k]}$$

- **▼ S(c)CP:** Starting point.
- ightharpoonup Arrow-Hurwicz iterations: $\alpha_k \equiv 0$.
- DFB: $\mu_k \to +\infty$.
- DiFB: Inertia step on the dual variable.

Arrow-Hurwicz building block

ITERATION: Arrow-Hurwicz iteration can be written as:

$$\begin{array}{ccc} \mathbf{L}_{\mathbf{z},\nu,\Theta_k} \colon & \mathcal{H} \times \mathcal{G} & \rightarrow \mathcal{H} \\ & & (\mathbf{x}^{[k]},\mathbf{u}^{[k]}) \mapsto \mathbf{L}_{\mathbf{z},\Theta_k,\mathcal{P}}, \mathcal{P}(\mathbf{x},\mathbf{L}_{\Theta_k,\mathcal{D}},\mathcal{D}(\mathbf{x}^{[k]},\mathbf{u}^{[k]})) \end{array}$$

with

$$\begin{split} \mathbf{L}_{\nu,\Theta_{k,\mathcal{D}},\mathcal{D}}(\mathbf{x},\mathbf{u}) &= \mathbf{prox}_{\tau_{k}(\nu g)^{*}} \left(\tau_{k} \mathbf{D} \mathbf{x} + \mathbf{u}\right), \\ \mathbf{L}_{\mathbf{z},\Theta_{k,\mathcal{P}},\mathcal{P}}(\mathbf{x},\mathbf{u}) &= \mathbf{P}_{C} \left(\frac{1}{1+\mu_{k}} \mathbf{x} - \frac{\mu_{k}}{1+\mu_{k}} \mathbf{D}^{\top} \mathbf{u} + \frac{\mu_{k}}{1+\mu_{k}} \mathbf{z}\right) \end{split}$$

DEEP LEARNING NOTATION:

$$f_{\Theta} = \eta^{[K]} (W^{[K]} \dots \eta^{[1]} (W^{[1]} \cdot + b^{[1]}) \dots + b^{[K]})$$

Deep Arrow-Hurwicz building block

LAYER: Arrow-Hurwicz layer can be written as:

$$\begin{array}{ccc} \mathbf{L}_{\mathbf{z},\nu,\Theta_k} \colon & \mathcal{H} \times \mathcal{G} \to \!\! \mathcal{H} \\ & & (\mathbf{x}^{[k]},^{[k]}) \!\mapsto\! \mathbf{L}_{\mathbf{z},\Theta_k,\mathcal{P}}, \!\! \mathcal{P}}(\mathbf{x}^{[k]},\mathbf{L}_{\Theta_k,\mathcal{D}}, \!\! \mathcal{D}}(\mathbf{x}^{[k]},\mathbf{u}^{[k]})), \end{array}$$

with

$$\begin{split} \mathbf{L}_{\nu,\Theta_{k,\mathcal{D}},\mathcal{D}}(\mathbf{x},\mathbf{u}) &= \mathbf{prox}_{\tau_k(\nu g)^*} \left(\tau_k \mathbf{D}_{k,\mathcal{D}} \mathbf{x} + \mathbf{u} \right), \\ \mathbf{L}_{\mathbf{z},\Theta_{k,\mathcal{P}},\mathcal{P}}(\mathbf{x},\mathbf{u}) &= \mathbf{P}_{C} \left(\frac{1}{1+\mu_k} \mathbf{x} - \frac{\mu_k}{1+\mu_k} \mathbf{D}_{k,\mathcal{P}}^\top \mathbf{u} + \frac{\mu_k}{1+\mu_k} \mathbf{z} \right), \end{split}$$

HardTanh versus proximity operator of ℓ_1

Most of activation functions are proximity operator :
 ReLU, Unimodal sigmoid, Softmax . . .
 [Combettes, Pesquet 2020]

Proposition [Le, Pustelnik, Foare 2022]: The proximity operator of the conjugate of the ℓ_1 -norm scaled by parameter $\lambda>0$ fits the HardTanh activation function, i.e., for every $\mathbf{x}=(\mathbf{x}_i)_{1\leqslant i\leqslant N}$:

$$\operatorname{prox}_{(\lambda\|\cdot\|_1)^*}(\mathbf{x}) = P_{\|\cdot\|_{\infty} \leqslant \lambda}(\mathbf{x}) = \operatorname{HardTanh}_{\lambda}(\mathbf{x}) = (p_i)_{1 \leqslant i \leqslant N}$$

where

$$\mathbf{p}_i = \begin{cases} -\lambda & \text{if} \quad \mathbf{p}_i < -\lambda, \\ \lambda & \text{if} \quad \mathbf{p}_i > \lambda, \\ \mathbf{p}_i & \text{otherwise}. \end{cases}$$

Deep Arrow-Hurwicz building block + skip connections

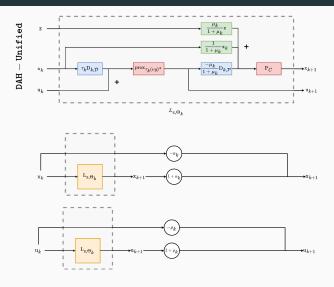


Figure 1: Architecture of the proposed DAH-Unified block for the k-th layer. Inertial step for ScCP (top) and DiFB (bottom).

	Θ_k	Comments
DDFB-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$	absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$
DDFB-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{\top}$	define $ au_k = 1.99 \ \mathrm{D}_k\ ^{-2}$

	Θ_k	Comments
DDFB-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$	absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$
DDFB-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{T}$	define $\tau_k = 1.99 \ \mathbf{D}_k\ ^{-2}$
DCP-LFO	$D_{k,\mathcal{P}}, D_{k,\mathcal{D}}, \mu$	learn $\mu=\mu_0=\dots=\mu_K$, and absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$
DCP-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{T}, \mu$	learn $\mu=\mu_0=\cdots=\mu_K$, and fix $\tau_k=0.99\mu^{-1}\ \mathbf{D}_k\ ^{-2}$

	Θ_k	Comments	
DDFB-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$	absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$	
DDiFB-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$, α_k	fix α_k , and absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$	
DDFB-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{\top}$	define $\tau_k = 1.99 \ D_k\ ^{-2}$	
DDiFB-LNO	$\mathbf{D}_{k,\mathcal{P}} = \mathbf{D}_{k,\mathcal{D}}^{\top}$	fix $\alpha_k = \frac{t_k - 1}{t_{k+1}}$, $t_{k+1} = \frac{k + a - 1}{a}$,	
		$a > 2$, and $\tau_k = 0.99 \ D_k\ ^{-2}$	
DCP-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$, μ	learn $\mu = \mu_0 = \cdots = \mu_K$,	
		and absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$	
DCP-LNO	$\mathbf{D}_{k,\mathcal{P}} = \mathbf{D}_{k,\mathcal{D}}^{\top}, \mu$	learn $\mu=\mu_0=\cdots=\mu_K$, and fix $\tau_k=0.99\mu^{-1}\ \mathbf{D}_k\ ^{-2}$	

	Θ_k	Comments	
DDFB-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$	absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$	
	$D_{k,\mathcal{P}}, D_{k,\mathcal{D}}, \alpha_k$	fix $lpha_k$, and absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$	
DDFB-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{T}$	define $ au_k = 1.99 \ \mathrm{D}_k\ ^{-2}$	
DDiFB-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{\top}$	fix $\alpha_k = \frac{t_k - 1}{t_{k+1}}$, $t_{k+1} = \frac{k + a - 1}{a}$,	
		$a>2$, and $ au_k=0.99\ { m D}_k\ ^{-2}$	
DCP-LFO	$D_{k,\mathcal{P}}$, $D_{k,\mathcal{D}}$, μ	learn $\mu=\mu_0=\cdots=\mu_K$,	
		and absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$	
DScCP-LFO	$D_{k,\mathcal{P}}, D_{k,\mathcal{D}}, \mu_0$	learn μ_0 , absorb $ au_k$ in $\mathrm{D}_{k,\mathcal{D}}$,	
		and fix $lpha_k=(1+2\mu_k)^{-1/2}$,	
		and $\mu_{k+1}=lpha_k\mu_k$	
DCP-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{T}, \mu$	learn $\mu=\mu_0=\cdots=\mu_K$,	
		and fix $ au_k = 0.99 \mu^{-1} \ \mathbf{D}_k \ ^{-2}$	
DScCP-LNO	$D_{k,\mathcal{P}} = D_{k,\mathcal{D}}^{T}, \mu_k$	learn μ_k , and fix $\alpha_k = (1 + 2\mu_k)^{-1/2}$,	
	,	and $\tau_k = 0.99 \mu_k^{-1} \ D_k\ ^{-2}$	

Limit case for deep unfolded NNs

[Le, Repetti, Pustelnik 2023]

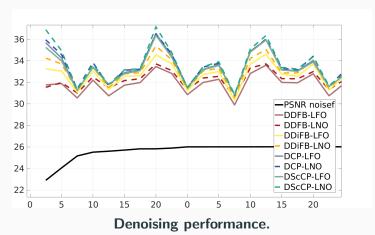
We consider the unfolded NNs DD(i)FB and D(Sc)CP. Assume that, for every $k \in \{1,\ldots,K\}$, $D_{k,\mathcal{D}} = D$ and $D_{k,\mathcal{P}} = D^{\top}$, for $D \colon \mathbb{R}^N \to \mathbb{R}^{|\mathbb{F}|}$. In addition, for each architecture, we further assume that, for every $k \in \{1,\ldots,K\}$,

- DDFB: $\tau_k \in (0, 2/\|\mathbf{D}\|_S^2)$.
- DDiFB: $\tau_k \in (0, 1/\|\mathbf{D}\|_S^2)$ and $\rho_k = \frac{t_k 1}{t_{k+1}}$ with $t_k = \frac{k + a 1}{a}$ and a > 2.
- DCP: $(\tau_k, \mu_k) \in (0, +\infty)^2$ such that $\tau_k \mu_k \|\mathbf{D}\|_S^2 < 1$.
- DScCP: $\alpha_k = (1 + 2\mu_k)^{-1/2}$, $\mu_{k+1} = \alpha_k \mu_k$, and $\tau_{k+1} = \tau_k \alpha_k^{-1}$ with $\tau_0 \mu_0 \|\mathbf{D}\|_S^2 \leqslant 1$.

Then, we have $\mathbf{x}_K \to \widehat{\mathbf{x}}$ when $K \to +\infty$, where \mathbf{x}_K is the output of either of the unfolded NNs DD(i)FB or D(Sc)CP, and $\widehat{\mathbf{x}}$ is a solution to

$$\min_{\mathbf{x} \in \mathcal{H}} \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|_2^2 + g(\mathrm{D}\mathbf{x}) + \iota_C(\mathbf{x}).$$

Denoising performance



PSNR (with (K,J)=(20,64)), for 20 images of BSDS500 validation set, degraded with noise level $\delta=0.05$.

Denoising performance

DRUnet 35.81dB

DDFB-LNO 32.81dB

34.74dB

Denoising performance on Gaussian noise. Example of denoised images (and PSNR values) for Gaussian noise $\delta=0.05$ obtained with DRUnet and the proposed DDFB-LNO and DScCP-LNO, with (K,J)=(20,64).

Complexity of the models

		Time (msec)	$ \Theta $	FLOPs ($\times 10^3$ G)
ВМЗ	D	$13 \times 10^3 \pm 317$	_	_
DRU	net	96 ± 21	32,640,960	137.24
LNO	DDFB	3 ± 1.5	34,560	2.26
	DDiFB	3 ± 0.5	34,560	
	DDCP	6 ± 1	34,561	
	DDScCP	7 ± 1	34,580	
LFO	DDFB	4 ± 17	69, 120	2.26
	DDiFB	5 ± 15	69,121	
	DDCP	7 ± 14	69,121	
	DDScCP	9 ± 15	69, 160	

NN robustness

 $lue{z}$ Given an input $lue{z}$ and a perturbation ϵ , the error on the output can be upper bounded :

$$||f_{\Theta}(\mathbf{z} + \epsilon) - f_{\Theta}(\mathbf{z})|| \leq \chi ||\epsilon||.$$

where χ certificated of the robustness.

ightharpoonup [Combettes, Pesquet, 2020]: χ can be upper bounded by:

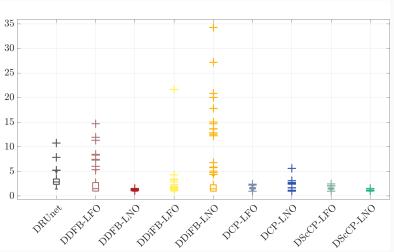
$$\chi \leqslant \prod_{k=1}^{K} \left(\|W_{k,\mathcal{P}}\|_{S} \times \|W_{k,\mathcal{D}}\|_{S} \right).$$

[Pesquet, Repetti, Terris, Wiaux, 2020]: tighter bound by Lipschitz continuity:

$$\chi \approx \max_{(\mathbf{z}_s)_{s \in \mathbb{I}}} \| \operatorname{J} f_{\Theta}(\mathbf{z}_s) \|_{S}.$$

where J denotes the Jacobian operator.

NN robustness



Distribution of $(\|\operatorname{J} f_{\Theta}(\mathbf{z}_s)\|_S)_{s\in\mathbb{J}}$ for 100 images extracted from BSDS500 validation dataset \mathbb{J} , for the proposed PNNs and DRUnet.

Plug and play algorithms

• Variational approach $(k \to \infty)$:

$$\mathbf{x}^{[k+1]} = \mathrm{prox}_{\gamma g}(\mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]})))$$

• PnP $(k \to \infty)$

$$\mathbf{x}^{[k+1]} = D(\mathbf{x}^{[k]} - \gamma \nabla f(\mathbf{x}^{[k]})))$$

- Convergence of $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ ensured if denoiser firmly nonexpansive (i.e. $\alpha = 1/2$).
 - Most of the existing denoisers used in PnP do not satisfy this condition
 - Some recent works propose denoisers that can be built to satisfy this condition ([Hasannasab et al, 2020], [Terris et al, 2020], [Terris et al, 2021])

Bayesian interpretation

- x: realization of a random vector X.
- z: realization of a random vector Z.

MAP estimator (Maximum A Posteriori)

$$\begin{array}{lll} \mathbf{D}_{\mathrm{MAP}}(\mathbf{z}) & \in & \mathrm{Argmax} \;\; p(\mathbf{x}|\mathbf{z}) \\ \Leftrightarrow & \mathbf{D}_{\mathrm{MAP}}(\mathbf{z}) \;\; \in & \mathrm{Argmax} \;\; \frac{p(\mathbf{z}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{z})} \\ \Leftrightarrow & \mathbf{D}_{\mathrm{MAP}}(\mathbf{z}) \;\; \in & \mathrm{Argmin} \;\; \underbrace{-\log p(\mathbf{z}|\mathbf{x})}_{\mathsf{Likelihood}} \;\; \underbrace{-\log p(\mathbf{x})}_{\mathsf{Prior}} \end{array}$$

Assuming
$${\bf z}={\bf x}+{\bf b}$$
 where ${\bf b}\sim \mathcal{N}(0,\sigma^2\,{\bf I})$,
$${\rm D_{MAP}}({\bf z})={\rm prox}_{-\log p_{\bf X}}({\bf x})$$

MMSE and Tweedie

Assuming that \mathbf{x} has been sampled from a prior density $p_{\mathbf{X}}$ and that $\mathbf{z} = \mathbf{x} + \mathbf{b}$ where $\mathbf{b} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$, then

$$D_{\mathrm{MMSE}}(\mathbf{z}) = \mathbb{E}[\mathbf{X}|\mathbf{Z} = \mathbf{z}] = \mathbf{z} + \sigma^2 \nabla_{\mathbf{z}} \log p_{\mathbf{Z}}(\mathbf{z}).$$

- p_Z is given by a standard convolution between pdfs
 p_Z = p_B * p_X.
- Identity was first reported by Robbins in 1956.
- $\mathbb{E}[\mathbf{X}|\mathbf{Z}=\mathbf{z}]$ posterori mean (i.e. MMSE estimator, conditional expectation) of \mathbf{x} given \mathbf{z} .

Denoiser versus gradient

Proposition [Gribonval-Nikolova, 2020, Hurault et al. 2023] Let $g_\sigma\colon\mathbb{R}^N\to\mathbb{R}$ is a C^2 function with ∇g_σ be L_{g_σ} -Lipschitz with $L_{g_\sigma}<1$.

Then, for $D_{\sigma}:=\mathbf{I}-\nabla g_{\sigma}$, there exists a potential $\phi_{\sigma}\colon \mathbb{R}^{N}\to (-\infty,+\infty]$, such that $\mathrm{prox}_{\phi_{\sigma}}$ is one-to-one and $D_{\sigma}=\mathrm{prox}_{\phi_{\sigma}}$.

Moreover ϕ_σ is $\frac{L_{g_\sigma}}{L_{g_\sigma+1}}$ -weakly convex and it can be written $\phi_\sigma=\widehat{\phi}_\sigma+K$ on $\mathrm{Im}(D_\sigma)$ (which is open) for some constant $K\in\mathbb{R}$ and

$$\widehat{\phi}_{\sigma}(\mathbf{x}) = \begin{cases} g_{\sigma}(\mathbf{D}_{\sigma}^{-1}(\mathbf{x})) - \frac{1}{2} \|D_{\sigma}^{-1}(\mathbf{x}) - \mathbf{x}\|^2 & \text{if} \quad \mathbf{x} \in \mathrm{Im}(D_{\sigma}) \\ +\infty & \text{otherwise}. \end{cases}$$

Additionally $\widehat{\phi}_{\sigma}(\mathbf{x}) \geqslant g_{\sigma}(\mathbf{x})$.

Weakly convex

For $\Psi:\mathbb{R}^N\to]-\infty,+\infty]$ be a proper, l.s.c., M-weakly convex function with M>0.

We have, forall
$$(\mathbf{x}, \mathbf{y})$$
 in \mathbb{R}^N ,

$$(\forall \mathbf{u} \in \partial \Psi(\mathbf{x})) \; \langle \mathbf{y} - \mathbf{x} | \mathbf{u} \rangle + \Psi(\mathbf{x}) - \frac{M}{2} \|\mathbf{x} - \mathbf{y}\|^2 \leqslant \Psi(\mathbf{y}) \}$$
 and, for $t \in [0,1]$,

$$\Psi(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\Psi(\mathbf{x}) + (1-t)\Psi(\mathbf{y}) + \frac{M}{2}t(1-t)\|\mathbf{x} - \mathbf{y}\|^2$$

PnP: Characterization of the limit point

 Characterization of the limit point as solution to a monotone inclusion problem i.e.

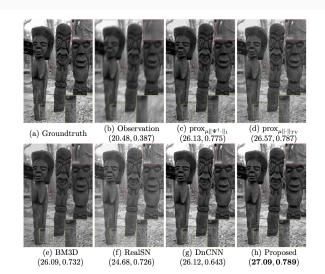
$$0 \in \partial f(\widehat{\mathbf{x}}) + M(\widehat{\mathbf{x}})$$

with $D = \frac{\mathbf{I} + Q}{2}$ with Q non-expansive and $M = 2(\mathbf{I} + Q)^{-1} - \mathbf{I}$ a maximally monotone operators [Terris et al, 2021].

- Characterization of the limit point as solution to a variational (non-convex) minimisation problem
 - Denoiser used in the gradient step ([Laumont et al, 2021], [Hurault et al, 2021])
 - Denoiser used in the proximity step ([Hurault et al, 2022])

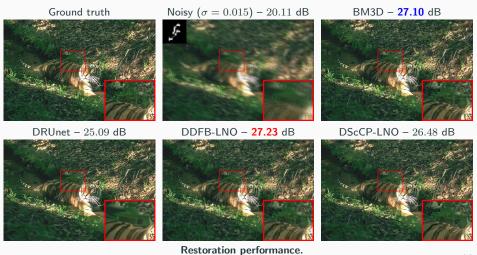
PnP imposing firmly non-expansivity of the denoiser

[Pesquet et al., 2021]



PnP based on PNN

[Le et al., 2023]



Restoration example for $\sigma = 0.015$, with parameters $\gamma = 1.99$ and β chosen optimally

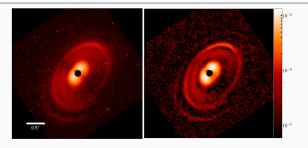
Unfolded proximal schemes with non-linear operators

Context: Image restoration

 \longrightarrow Data: $\mathbf{z} \in \mathbb{R}^M$ degraded version of an original image $\overline{\mathbf{x}} \in \mathbb{R}^N$:

$$\mathbf{z} = \mathbf{A}\overline{\mathbf{x}} + \mathbf{w}$$

- $A \in \mathbb{R}^{M \times N}$: linear degradation (e.g. a blur)
- w : noise (e.g. Gaussian noise)



Context: Image restoration (astronomy context)

- Studying circumstellar environments: crucial for understanding exoplanets and stellar systems.
- High contrast imagery: high contrast between environment and host star.
- Instrument: Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) and its instrument InfraRed Dual Imaging and Spectrograph (IRDIS) installed on the Very Large Telescope (VLT).
- Direct model:

$$\mathbf{z}_{j,\ell} = T_{j,\ell} A \left(\frac{1}{2} I^u + I^p \cos^2(\theta - 2\alpha_\ell - \psi_j) \right) + \varepsilon_{j,\ell},$$

or

$$\mathbf{z}_{j,\ell} = \sum_{m=1}^{3} \nu_{j,\ell,m} T_{j,\ell} A S_m + \varepsilon_{j,\ell},$$

• Analysis formulation:
$$\left| \min_{\mathbf{x}} \frac{1}{2} \| \mathbf{A} \mathbf{x} - \mathbf{z} \|_2^2 + \| \mathbf{D} \mathbf{x} \|_1 \right|$$

Condat-Vũ iterations:

$$\begin{array}{ll} \mathbf{x}^{[k+1]} &= \mathbf{x}_k - \tau \mathbf{A}^* (\mathbf{A} \mathbf{x}^{[k]} - \mathbf{z}) - \tau \mathbf{D}^* \mathbf{u}^{[k]} \\ \mathbf{u}^{[k+1]} &= \mathrm{prox}_{\gamma \parallel \cdot \parallel_1^*} \big(\mathbf{u}^{[k]} + \gamma \mathbf{D} (2 \mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \big) \end{array}$$

Reformulation:

$$\mathbf{x}^{[k+1]} = (\mathrm{Id} - \tau \mathbf{A}^* \mathbf{A}) \mathbf{x}^{[k]} - \tau \mathbf{D}^* \mathbf{u}^{[k]} + \tau \mathbf{A}^* \mathbf{z}$$

$$\mathbf{u}^{[k+1]} = \mathrm{prox}_{\gamma \| \cdot \|_1^*} (\gamma \mathbf{D} (\mathrm{Id} - 2\tau \mathbf{A}^* \mathbf{A}) \mathbf{x}^{[k]} + (\mathrm{Id} - 2\tau \gamma \mathbf{D} \mathbf{D}^*) \mathbf{u}^{[k]} + 2\tau \gamma \mathbf{D} \mathbf{A}^* \mathbf{z}).$$

Layer <u>network</u>: [Jiu, Pustelnik, 2021]

$$\begin{bmatrix} \mathbf{x}^{[k+1]} \\ \mathbf{u}^{[k+1]} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \operatorname{prox}_{\gamma \| \cdot \|_{1}^{*}} \\ \eta^{[k]} \end{bmatrix} \begin{bmatrix} \operatorname{Id} - \tau \mathbf{A}^{*} \mathbf{A} & -\tau \mathbf{D}^{*} \\ \gamma \mathbf{D} (\operatorname{Id} - 2\tau \mathbf{A}^{*} \mathbf{A}) & \operatorname{Id} - 2\tau \gamma \mathbf{D} \mathbf{D}^{*} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[k]} \\ \mathbf{u}^{[k]} \end{bmatrix} + \begin{bmatrix} \tau \mathbf{A}^{*} \mathbf{z} \\ 2\tau \gamma \mathbf{D} \mathbf{A}^{*} \mathbf{z} \end{bmatrix}$$

$$0$$

$$f_{\Theta}(\mathbf{z}) = \eta^{[K]} (W^{[K]} \dots \eta^{[1]} (W^{[1]} \mathbf{z} + b^{[1]}) \dots + b^{[K]})$$

lacktriangle Network with fixed layer: $\Theta = \{D, \tau, \gamma\}$

$$egin{bmatrix} egin{bmatrix} \mathbf{x}^{[k+1]} \ \mathbf{u}^{[k+1]} \end{bmatrix} = egin{bmatrix} \mathbf{I} \ \mathbf{prox}_{\gamma \| \cdot \|_1^*} \ \mathbf{prox}_{\gamma \| \cdot \|_1^*} \end{bmatrix} egin{bmatrix} \mathrm{Id} - au \mathrm{A}^* \mathrm{A} & - au \mathrm{D}^* \ \gamma \mathrm{D}(\mathrm{Id} - 2 au \mathrm{A}^* \mathrm{A}) & \mathrm{Id} - 2 au \gamma \mathrm{DD}^* \end{bmatrix} egin{bmatrix} \mathbf{x}^{[k]} \ \mathbf{u}^{[k]} \end{bmatrix} + egin{bmatrix} au \mathrm{A}^* \mathrm{z} \ 2 au \gamma \mathrm{DA}^* \mathrm{z} \end{bmatrix} \\ egin{bmatrix} eta^{[k]} \end{bmatrix} & W^{[k]} \end{bmatrix}$$

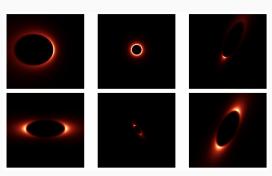
► Network with variable layers: $\Theta = \{D_k, \tau_k, \gamma_k, \}_{1 \leqslant k \leqslant K}$

$$\begin{bmatrix} \mathbf{x}^{[k+1]} \\ \mathbf{u}^{[k+1]} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \operatorname{prox}_{\gamma_k \| \cdot \|_1^*} \\ \boldsymbol{\eta}^{[k]} \end{bmatrix} \begin{bmatrix} \operatorname{Id} - \tau_k \mathbf{A}^* \mathbf{A} & -\tau_k \mathbf{D}_k^* \\ \gamma_k \mathbf{D}_k (\operatorname{Id} - 2\tau_k \mathbf{A}^* \mathbf{A}) & \operatorname{Id} - 2\tau \gamma_k \mathbf{D}_k \mathbf{D}_k^* \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[k]} \\ \mathbf{u}^{[k]} \end{bmatrix} + \begin{bmatrix} \tau_k \mathbf{A}_k^* \mathbf{z} \\ 2\tau_k \gamma_k \mathbf{D}_k \mathbf{A}^* \mathbf{z} \end{bmatrix} \begin{bmatrix} \mathbf{x}^{[k]} \\ \mathbf{y}^{[k]} \end{bmatrix}$$

+ specificities for the first and last layers.

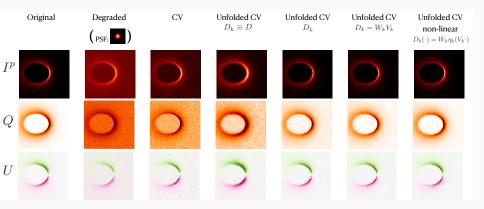
Dataset

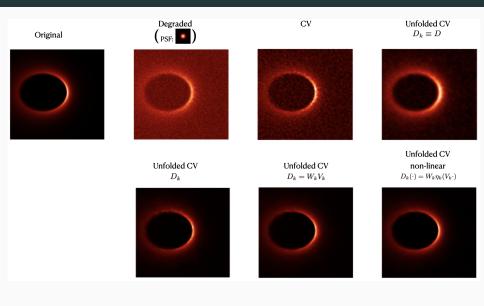
- DDIT: Debris Dlsks Tools library produces synthetic images of $(I_{\rm disk}^u, I^p, \theta)$.
- \bullet $I_{
 m star}^u$ has been obtained from real observational high-contrast coronagraphic data from the SPHERE.
- Different semi-major axis of the disk, inclination, eccentricity, and ratio between the star and disk intensity.

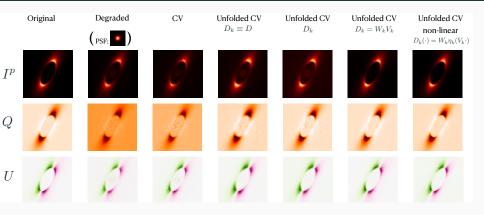


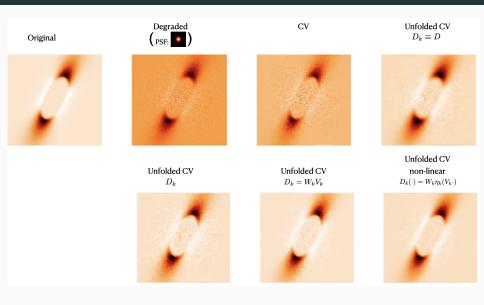
Dataset

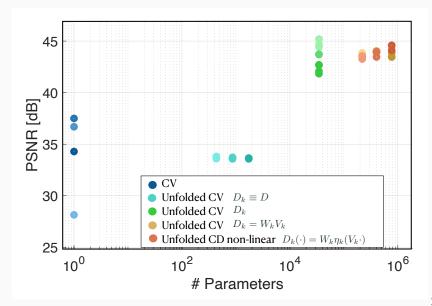
- **DDIT**: Debris Dlsks Tools library produces synthetic images of $(I_{\rm disk}^u, I^p, \theta)$.
- ullet $I_{
 m star}^u$ has been obtained from real observational high-contrast coronagraphic data from the SPHERE.
- Different semi-major axis of the disk, inclination, eccentricity, and ratio between the star and disk intensity.
- **Synthetic dataset** Prescribe blur and Gaussian noise with a standard deviation of 0.1.
- ullet More realistic dataset z obtained from RHAPSODIE forward model.

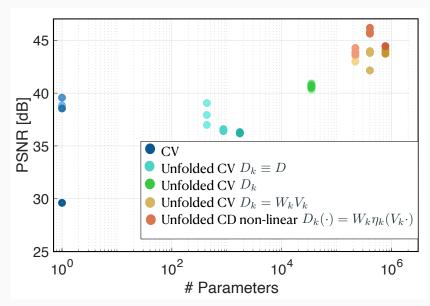












References PnP

- Pesquet, J. C., Repetti, A., Terris, M., Wiaux, Y., Learning maximally monotone operators for image recovery. SIAM Journal on Imaging Sciences, 14(3), 1206-1237, 2021.
- Hurault, S., Chambolle, A., Leclaire, A., and Papadakis, N., A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser. In International Conference on Scale Space and Variational Methods in Computer Vision (pp. 379-392). Cham: Springer International Publishing, 2023.
- Kazerouni, A., Kamilov, U. S., Bostan, E., and Unser, M. Bayesian denoising: From MAP to MMSE using consistent cycle spinning. IEEE Signal Processing Letters, 20(3), 249-252, 2013.

References unfolded

- Gregor, K. and LeCun, Y. Learning fast approximations of sparse coding, in Proc. 27th International Conference on Machine Learning, 2010, pp. 399â406.
- Combettes, P. L. and Pesquet, J.-C., Lipschitz certificates for layered network structures driven by averaged activation operators, SIAM J. Math. Data Sci., vol. 2, no. 2, pp. 529â557, 2020
- Jiu M. and Pustelnik N., A deep primal-dual proximal network for image restoration, IEEE J. Sel. Top. Signal Process., vol. 15, no. 2, pp. 190â203, 202.
- H.T.V. Le, A. Repetti, and N. Pustelnik PNN: From proximal algorithms to robust unfolded image denoising networks and Plug-and-Play methods, 2023.
- E. Chappon, N. Pustelnik, J. Tacchela, L. Denneulin, A. Ferrari, M. Langlois, From linear to nonlinear unfolded Condat-Vu algorithm for spectro-polarimetric hight-constrast image recovery, EUSIPCO 2024.

Conclusions

- PnP and unfolded: two frameworks to combine variational approaches and deep neural network.
- PnP: convergence guarantees but slow.
- Unfolded: fast but no convergence guarantees.
- Proximal unfolded schemes may help to design robust neural networks.
- Proximal unfolded NN schemes: good compromise between number of parameters and performance.
- More parameters + nonlinear D to achieve better performance with proximal unfolded schemes.