Résumé
Cet article traite du problème de l'apprentissage des réseaux de neurones à fonctions radiales de base pour l'approximation de fonctions non linéaires L2 de Rd vers R. Pour ce type de problème, les algorithmes hybrides sont les plus utilisés. Ils font appel à des techniques d'apprentissage non supervisées pour l'estimation des centres et des paramètres d'échelle des fonctions radiales, et à des techniques d'apprentissage supervisées pour l'estimation des paramètres linéaires. Les méthodes d'apprentissage supervisées reposent généralement sur l'estimateur (ou le critère) des moindres carrées (MC). Cet estimateur est optimal dans le cas où le jeu de données d'apprentissage (zi, yi)i=1,2,..,q est constitué de sorties yi, i = 1, .., q bruitées et d'entrées zi, i = 1, .., q exactes. Cependant lors de la collecte des données expérimentales il est rarement possible de mesurer l'entrée zi sans bruit. L'utilisation de l'estimateur des MC produit une estimation biaisée des paramètres linéaires dans le cas où le jeux de données d'apprentissage est à entrées et sorties bruitées, ce qui engendre une estimation erronée de la sortie. Cet article propose l'utilisation d'une procédure d'estimation fondée sur le modèle avec variables entachées d'erreurs pour l'estimation des paramètres linéaires (pour l'apprentissage supervisé) dans le cas où le jeux de données d'apprentissage est à entrées et sorties bruitées. L'interprétation géométrique du critère d'estimation proposé est établie afin de mettre en évidence son avantage relativement au critère des moindres carrés. L'amélioration des performances en terme d'approximation de fonctions non linéaires est illustrée sur un exemple.