Résumé
Le filtrage de Kalman-Bucy s'applique au modèle d'état comprenant des équations linéaires, bruitées, décrivant l'évolution de l'état et des équations, linéaires, bruitées d'observations. Ce filtrage consiste à calculer, façon récursive, la loi de probabilité, a postériori, de l'état au vue de l'observation actuelle et des observations passées. Le filtrage par densités approchées permet de traiter des équations d'état non linéaires ou à bruits non Gaussiens. Pour un coefficient de rappel aléatoire, cas typique d'une situation de changements de modèles, l'article introduit une famille de lois de probabilités, paramétrées, bimodales servant, par ajustement des paramètres, à approcher les lois a posteriori de l'état aux divers instants. Les paramètres sont calculés récursivement, lors des mises à jour et des prédictions.